K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2021

undefined

4 tháng 3 2022

\(M=\dfrac{4a}{a^2+4}=\dfrac{\left(a^2+4\right)-\left(a^2-4a+4\right)}{a^2+4}=1-\dfrac{\left(a-2\right)^2}{a^2+4}\)

-Vì \(\left(a-2\right)^2\ge0;a^2+4>0\) nên \(\dfrac{\left(a-2\right)^2}{a^2+4}\ge0\)

\(\Rightarrow M=1-\dfrac{\left(a-2\right)^2}{a^2+4}\le1\)

\(M_{max}=1\Leftrightarrow\dfrac{\left(a-2\right)^2}{a^2+4}=0\Leftrightarrow\left(a-2\right)^2=0\Leftrightarrow a-2=0\Leftrightarrow a=2\).

22 tháng 6 2021

a) đk x khác 0;2

P =  \(\dfrac{1}{x\left(x-2\right)}.\left(\dfrac{x^2+4}{x}-4\right)+1\)

\(\dfrac{1}{x\left(x-2\right)}.\dfrac{x^2-4x+4}{x}+1\)

\(\dfrac{1}{x\left(x-2\right)}.\dfrac{\left(x-2\right)^2}{x}+1\)

\(\dfrac{x-2}{x^2}+1\)

\(\dfrac{x^2+x-2}{x^2}\)

b) Để \(\left|2+x\right|=1\)

<=> \(\left[{}\begin{matrix}2+x=1< =>x=-1\left(tm\right)\\2+x=-1< =>x=-3\left(tm\right)\end{matrix}\right.\)

TH1: x = -1

Thay x = -1 vào P, ta có:

\(P=\dfrac{\left(-1\right)^2-1-2}{\left(-1\right)^2}=-2\)

TH2: x = -3

Thay x = -3 vào P, ta có:

\(P=\dfrac{\left(-3\right)^2-3-2}{\left(-3\right)^2}=\dfrac{4}{9}\)

c) P = \(1+\dfrac{x-2}{x^2}\)

Xét \(\dfrac{x^2}{x-2}=\dfrac{\left(x-2\right)^2+4\left(x-2\right)+4}{x-2}\)

\(\left(x-2\right)+\dfrac{4}{x-2}+4\)

Áp dụng bdt co-si, ta có:

\(\left(x-2\right)+\dfrac{4}{x-2}\ge2\sqrt{\left(x-2\right)\dfrac{4}{x-2}}=4\)

<=> \(\dfrac{x^2}{x-2}\ge4+4=8\)

<=> \(\dfrac{x-2}{x^2}\le\dfrac{1}{8}\)

<=> A \(\le\dfrac{9}{8}\)

Dấu "=" <=> x = 4

25 tháng 2 2022

a) Để m đạt giá trị lớn nhất là 0 thì \(y=\left(3m-4\right)x^2\le0\) ⇔ \(3m-4\le0\)

                                                                                       ⇔ \(m\le\dfrac{4}{3}\) nhưng theo điều kiện  

                                                                                             thì m ≠ \(\dfrac{4}{3}\)

➤ Để m đạt giá trị lớn nhất là 0 thì \(m< \dfrac{4}{3}\)

b) Để m đạt giá trị nhỏ nhất là 0 thì \(y=\left(3m-4\right)x^2\ge0\) ⇔ \(3m-4\ge0\)

                                                                                       ⇔ \(m\ge\dfrac{4}{3}\) nhưng theo điều kiện  

                                                                                           thì m ≠ \(\dfrac{4}{3}\)

➤ Để m đạt giá trị nhỏ nhất là 0 thì \(m>\dfrac{4}{3}\)

                                                                                        

 

4 tháng 11 2023

\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)

4 tháng 11 2023

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)

2 tháng 3 2022

Tham khảo:

undefined

CHÚC EM HỌC TỐT NHÁoaoa

6 tháng 6 2021

Câu hỏi đâu bn??

6 tháng 6 2021

đấy mk sửa lại rùi đó

a: Ta có: \(x^2=3-2\sqrt{2}\)

nên \(x=\sqrt{2}-1\)

Thay \(x=\sqrt{2}-1\) vào A, ta được:

\(A=\dfrac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{\sqrt{2}-1}=7+5\sqrt{2}\)