if tg=0 then tinh:=y else tinh:=tinh(y,tg);
câu này có ý nghĩa gì các bạn nhỉ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
program bai1;
uses crt;
var x,y,n:integer;
begin
clrscr;
x:=7;
n:=2.68;
write('nhap so x:'); readln(x);
write('nhap so y:');readln(y);
if x mod 2 =0 then y:=y*x
else y:=y*n;
write('ket qua phep tinh la:', y);
readln
end.
a) Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:
\(DE^2+DF^2=EF^2\)
\(\Leftrightarrow DF^2=EF^2-DE^2=5^2-3^2=16\)
hay DF=4(cm)
Xét ΔDEF có
DI là đường phân giác ứng với cạnh EF(gt)
nên \(\dfrac{IE}{DE}=\dfrac{IF}{DF}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{IE}{3}=\dfrac{IF}{4}\)
mà IE+IF=EF(I nằm giữa E và F)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{IE}{3}=\dfrac{IF}{4}=\dfrac{IE+IF}{3+4}=\dfrac{EF}{7}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{IE}{3}=\dfrac{5}{7}\\\dfrac{IF}{4}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}IE=\dfrac{15}{7}cm\\IF=\dfrac{20}{7}cm\end{matrix}\right.\)
Vậy: \(IE=\dfrac{15}{7}cm;IF=\dfrac{20}{7}cm\)
b) Xét ΔDEF vuông tại D và ΔHKF vuông tại H có
\(\widehat{HFK}\) chung
Do đó: ΔDEF\(\sim\)ΔHKF(g-g)
Suy ra: \(\dfrac{DE}{HK}=\dfrac{DF}{HF}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(DE\cdot HF=DF\cdot HK\)(đpcm)