Cho tam giác ABC cân tại A. M,n lần lượt trung điểm AB, AC và I là giao điểm BN và CM. Chứng minh: tam giác IBC cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 17 :Cho tam giác ABC cân tại A. Gọi M,N lần lượt là trung điểm của AB,AC. Chứng minh : a) MN // BC b) BN=CM Bài 18 : Cho tam giác ABC cân tại A. Gọi M,N tk nha
a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)
\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AM=MB=AN=NC
Xét ΔABN và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAN}\) chung
AN=AM(cmt)
Do đó: ΔABN=ΔACM(c-g-c)
b) Xét ΔANM có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
hay \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đoc của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)
mà \(\widehat{AMN}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)
a) Xét \(\Delta\)ABN và \(\Delta\)ACM có:
AB=AC (tam giác ABC cân tại A)
\(\widehat{A}\)chung
\(\widehat{ANB}=\widehat{AMC}=90^o\)
=> \(\Delta ABN=\Delta ACM\left(ch-gn\right)\)
a: Xét ΔMBC và ΔNCB có
MB=NC
\(\widehat{MBC}=\widehat{NCB}\)(ΔABC cân tại A)
BC chung
Do đó: ΔMBC=ΔNCB
b: ΔMBC=ΔNCB
=>\(\widehat{MCB}=\widehat{NBC}\)
Ta có: \(\widehat{ABN}+\widehat{CBN}=\widehat{ABC}\)
\(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)
mà \(\widehat{ABC}=\widehat{ACB};\widehat{CBN}=\widehat{MCB}\)
nên \(\widehat{ABN}=\widehat{ACM}\)
c: AM+MB=AB
AN+NC=AC
mà AB=AC
và MB=NC
nên AM=AN
Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
d: Ta có: \(\widehat{MCB}=\widehat{NBC}\)
=>\(\widehat{OBC}=\widehat{OCB}\)
Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)
nên ΔOBC cân tại O
=>OB=OC
=>O nằm trên đường trung trực của BC(1)
AB=AC
=>A nằm trên đường trung trực của BC(2)
IB=IC
=>I nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,O,I thẳng hàng
a)
Xét \(\Delta\)ABN và \(\Delta\)ACM có
\(\widehat{BAN}\)chung
AB =AC ( \(\Delta ABC\)cân )
AN = AM ( gt)
\(\Rightarrow\Delta ABN=\Delta ACM\)( c .g . c )
\(\Leftrightarrow\widehat{ABN}=\widehat{ACM}\)
Mà \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{NBC}=\widehat{MCB}\)
Hay\(\widehat{IBC}=\widehat{ICB}\)
\(\Rightarrow\Delta IBC\)cân tại I
b) Ta có AB = AC ( \(\Delta\)ABC cân ) (1)
IB = IC (\(\Delta\)IBC cân ) (2)
Từ (1) và (2) => AI là đường trung trực của BC ( điểm nằm trên đường trung trực của 1 đoạn thẳng thì cách đều 2 đầu mút )
Chúc bạn học giỏi !!!
a: Xét ΔABN vầ ΔACM có
AB=AC
góc A chung
AN=AM
=>ΔABN=ΔACM
=>BN=CM
b: Xét ΔNAE và ΔNCB có
góc NAE=góc NCB
NA=NC
góc ANE=góc CNB
=>ΔNAE=ΔNCB
=>AE=CB
Xét ΔMDA và ΔMCB có
góc MAD=góc MBC
MA=MB
góc AMD=góc BMC
=>ΔMDA=ΔMCB
=>AD=BC=AE
=>A là trug điểm của DE
c: Xét tứ giác ADBC có
AD//BC
AD=BC
=>ADBC là hình bình hành
=>DB=AC=BA
Xét tứ giác ABCE có
N là trung điểm chung của AC và BE
=>ABCE là hìh bình hành
=>CE=AB=DB
a) Xét ΔABN và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAN}\) chung
AN=AM(gt)
Do đó: ΔABN=ΔACM(c-g-c)
Suy ra: BN=CM(hai cạnh tương ứng)
b) Xét ΔAHB và ΔAHC có
AB=AC(ΔABC cân tại A)
AH chung
HB=HC(H là trung điểm của BC)
Do đó: ΔAHB=ΔAHC(c-c-c)
Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
hay AH⊥BC(đpcm)
c) Ta có: AH⊥BC(cmt)
mà H là trung điểm của BC(gt)
nên AH là đường trung trực của BC
⇔EH là đường trung trực của BC
⇔EB=EC(Tính chất đường trung trực của một đoạn thẳng)
Xét ΔEBC có EB=EC(cmt)
nên ΔEBC cân tại E(Định nghĩa tam giác cân)
a)
ta có: AB=AC suy ra 1/2 AB=1/2AC suy ra AN=NB=AM=MC
xét tam giác ABM và tam giác ACN có:
AB=AC
AM=AN(cmt)
A(chung)
suy ra tam giác ABM=ACN(c.g.c)
suy ra BM=CN
b)
ta có: I là trọng tâm cua tam giác ABC
ta có: MB=NC(theo câu a) suy ra 2/3MB=2/3NC suy ra IB=IC suy ra tam giac IBC cân tại I
c)
xét tam giác AIB và tam giác AIC có:
AB=AC
AI(chung)
IB=IC
suy ra tam giác AIB=AIC(c.c.c)
suy ra BAI=CAI
suy ra AI là phân giác của góc A
Ta có: \(AN=CN=\dfrac{AC}{2}\)(N là trung điểm của AC)
\(AM=BM=\dfrac{AB}{2}\)(M là trung điểm của AB)
mà AC=AB(ΔABC cân tại A)
nên AN=CN=AM=BM
Xét ΔABN và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAN}\) chung
AN=AM(cmt)
Do đó: ΔABN=ΔACM(c-g-c)
nên \(\widehat{ABN}=\widehat{ACM}\)(hai góc tương ứng)
Ta có: \(\widehat{ABN}+\widehat{CBN}=\widehat{ABC}\)(tia BN nằm giữa hai tia BA,BC)
\(\widehat{ACM}+\widehat{BCM}=\widehat{ACB}\)(tia CM nằm giữa hai tia CA,CB)
mà \(\widehat{ABN}=\widehat{ACM}\)(cmt)
và \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy trong ΔABC cân tại A)
nên \(\widehat{CBN}=\widehat{BCM}\)
hay \(\widehat{IBC}=\widehat{ICB}\)
Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)
nên ΔIBC cân tại I(Định lí đảo của tam giác cân)