Cho ΔDEF vuông tại D ( DE<DF) và các điểm M thuộc cạnh DF, H thuộc cạnh EF sao cho MH vuông góc với EF và MH=HE. Chứng minh DH là tia phân giác của góc D
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(EF=KE+KF=2+6=8\left(cm\right)\\ \text{Áp dụng HTL: }\\ DE^2=KE\cdot EF=16\Rightarrow DE=4\left(cm\right)\\ DK^2=EK\cdot FK=12\Rightarrow DK=2\sqrt{3}\left(cm\right)\)
a: EF=5cm
b: Xét ΔMDF vuông tại D và ΔMDC vuông tại D có
MD chung
FD=CD
Do đó:ΔMDF=ΔMDC
c: Xét ΔECF có
ED là đường cao
ED là đường trung tuyến
Do đó;ΔECF cân tại E
tham khảo
a: EF=5cm
b: Xét ΔMDF vuông tại D và ΔMDC vuông tại D có
MD chung
FD=CD
Do đó:ΔMDF=ΔMDC
c: Xét ΔECF có
ED là đường cao
ED là đường trung tuyến
Do đó;ΔECF cân tại E
a: EF=5cm
b: Xét ΔMDF vuông ạti D và ΔMDC vuông tại D có
MD chung
DF=DC
DO đo: ΔMDF=ΔMDC
c: Xét ΔECF có
ED là đường cao
ED là đường trung tuyến
Do đó: ΔECF cân tại E
a: Xét tứ giác AHDK có
\(\widehat{AHD}=\widehat{AKD}=\widehat{KAH}=90^0\)
Do đó: AHDK là hình chữ nhật