Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDEM vuông tại E và ΔDHM vuông tại H có
DM chung
góc EDM=góc HDM
=>ΔDEM=ΔDHM
b: Xét ΔMEK vuông tại E và ΔMHF vuông tại H có
ME=MH
góc EMK=góc HMF
=>ΔMEK=ΔMHF
=>MK=MF
=>ΔMKF cân tại M
c: KM+ME=EM+MF=EF<KF
a: góc MDH=90 độ-góc DMH
=90 độ-2*góc MDF
=90 độ-2*góc E
=góc F+góc E-2*góc E
=góc F-gócE
b: (EF+DH)^2-(DF+DE)^2
=EF^2+2*EF*DH+DH^2-DF^2-DE^2-2*DF*DE
=DH^2>0
=>EF+DH>DF+DE
=>EF-DE>DF-DH
\(\text{#TNam}\)
`a,` Xét Tam giác `HED` và Tam giác `HFD` có
`DE = DF (\text {Tam giác DEF cân tại D})`
\(\widehat{E}=\widehat{F}\) `(\text {Tam giác DEF cân tại D})`
`=> \text {Tam giác HED = Tam giác HDF (ch-gn)}`
`b,` Vì Tam giác `HED =` Tam giác `HFD (a)`
`-> HE = HF (\text {2 cạnh tương ứng})`
Xét Tam giác `HEM` và Tam giác `HFN` có:
`HE = HF (CMT)`
\(\widehat{E}=\widehat{F}\) `(a)`
\(\widehat{EMH}=\widehat{FNH}=90^0\)
`=> \text {Tam giác HEM = Tam giác HFN (ch-gn)}`
`-> EM = FN (\text {2 cạnh tương ứng})`
Ta có: \(\left\{{}\begin{matrix}DE=MD+ME\\DF=ND+NF\end{matrix}\right.\)
Mà `DE = DF, ME = NF`
`-> MD = ND`
Xét Tam giác `DMN: DM = DN (CMT)`
`-> \text {Tam giác DMN cân tại D}`
`->`\(\widehat{DMN}=\widehat{DNM}=\)\(\dfrac{180-\widehat{A}}{2}\)
Tam giác `DEF` cân tại `D`
`->`\(\widehat{E}=\widehat{F}=\)\(\dfrac{180-\widehat{A}}{2}\)
`->`\(\widehat{DMN}=\widehat{E}\)
Mà `2` góc này nằm ở vị trí đồng vị
`-> \text {MN // EF (t/c 2 đt' //)}`
a) Do M là trung điểm của EF nên ME=MF=MD(đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền)
Suy ra \(\Delta MDE\) cân tại M.
\(\Rightarrow\widehat{E}=\widehat{EDM}\)
Ta có:\(\widehat{F}=90^0-\widehat{E}\)
\(\widehat{HDE}=90^0-\widehat{E}\)
\(\Rightarrow\widehat{F}=\widehat{HDE}\)
Mà \(\widehat{MDH}=\widehat{MDE}-\widehat{HDE}\)
\(\Rightarrow\widehat{MDH}=\widehat{E}-\widehat{F}\)
b) Trên EF lấy điểm K sao cho EK=ED
Trên DF lấy điểm I sao cho DI=DH
Khi đó:\(EF-DE=EF-EK=KF\)
\(DF-DH=DF-DI=IF\)
Ta cần chứng minh \(KF>IF\),thật vậy!
Ta có:\(EK=ED\)
\(\Rightarrow\Delta EDK\) cân tại E
\(\Rightarrow\widehat{EKD}=\widehat{EDK}\)
Ta lại có:\(\widehat{EDK}+\widehat{KDI}=90^0\)
\(\widehat{EKD}+\widehat{HDK}=90^0\)
Mà \(\widehat{EKD}=\widehat{EDK}\left(cmt\right)\)
\(\Rightarrow\widehat{KDI}=\widehat{HDK}\)
Xét \(\Delta DHK\&\Delta DIK\) có:
\(DH=DI\)(theo cách chọn điểm phụ)
\(\widehat{KDI}=\widehat{HDK}\left(cmt\right)\)
\(DK\) là cạnh chung
\(\Rightarrow\Delta DHK=\Delta DIK\left(c-g-c\right)\)
\(\Rightarrow\widehat{KID}=90^0\)
\(\Rightarrow\Delta FIK\) vuông tại I
\(\Rightarrow FK>FI^{đpcm}\)
b. Ta co goc EMD + goc EMH =90 mà DEM = HEM nen EMD = EMH. Xet 2 tam giac DEM va HEM có EH canh chung, goc EMH =EMD, DEM=HEM
C. EF=EK suy ra tam giac EFK can tai E. EM la tia phan giác, cung là đường cao, ta lại có ED vuong góc voi EK. Suy ra M là trực tâm. Mà MH vuong goc EF. Suy ra KMH thang hang
a:
\(\widehat{HDE}+\widehat{E}=90^0\)(ΔHDE vuông tại H)
\(\widehat{E}+\widehat{F}=90^0\)(ΔEDF vuông tại D)
Do đó: \(\widehat{HDE}=\widehat{F}\)
ΔDEF vuông tại D
mà DM là đường trung tuyến
nên MD=MF
=>\(\widehat{MDF}=\widehat{MFD}=\widehat{F}\)
\(\widehat{EDH}+\widehat{MDH}+\widehat{FDM}=\widehat{EDF}=90^0\)
=>\(\widehat{F}+\widehat{MDH}+\widehat{F}=90^0\)
=>\(\widehat{MDH}+2\cdot\widehat{F}=\widehat{E}+\widehat{F}\)
=>\(\widehat{MDH}=\widehat{E}+\widehat{F}-2\cdot\widehat{F}=\widehat{E}-\widehat{F}\)
b:
Xét ΔDEF vuông tại D có DH là đường cao
nên \(DE\cdot DF=DH\cdot EF\)
ΔDEF vuông tại D
=>\(DE^2+DF^2=EF^2\)
\(\left(EF+DH\right)^2=EF^2+2\cdot EF\cdot DH+DH^2\)
\(=EF^2+2\cdot DE\cdot DF+DH^2\)
\(\left(DF+DE\right)^2=DF^2+2\cdot DF\cdot DE+DE^2\)
\(=\left(DF^2+DE^2\right)+2\cdot DF\cdot DE\)
\(=EF^2+2\cdot DH\cdot EF\)
\(\left(EF+DH\right)^2-\left(DF+DE\right)^2\)
\(=EF^2+2\cdot DH\cdot EF+DH^2-EF^2-2\cdot DH\cdot EF\)
\(=DH^2>0\)
=>EF+DH>DF+DE
=>EF-DE>DF-DH