Cho đoạn thẳng AB. Đường trung trực d của BC cắt BC tại H. Gọi M là 1 điểm của đường thẳng d ( M khác H ). Chứng minh Δ BHM = Δ CHM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Xét tg vuông ABE và tg vuông HBE có
BE chung
\(\widehat{ABE}=\widehat{HBE}\) (gt)
=> tg ABE = tg HBE (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)
b/
tg ABE = tg HBE (cmt) => AB = HB => tg BAH cân tại B
\(\widehat{ABE}=\widehat{HBE}\)
=> BE là trung trực của AH (Trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường trung trực)
c/
Xét tg vuông KBH và tg vuông ABC có
\(\widehat{B}\) chung
AB = HB (cmt)
=> tg KBH = tg ABC (Hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau) => BK=BC
Xét tg BKE và tg BCE có
BE chung
\(\widehat{ABE}=\widehat{HBE}\) (gt)
BK=BC (cmt)
=> tg BKE = tg BCE (c.g.c) => EK = EC
d/
Xét tg vuông AKE có
AE<EK (trong tg vuông cạnh huyền là cạnh có độ dài lớn nhất
Mà EK=EC (cmt)
=> AE<EC
Ta có hình vẽ sau:
a) \(\widehat{AHB}\) = \(\widehat{DHB}\) = \(\frac{180^o}{2}\) = 90o (2 góc kề bù)
Xét ΔABH và ΔDBH có:
BH là cạnh chung
\(\widehat{AHB}\) = \(\widehat{DHB}\) = 90o (cm trên)
AH = DH (gt)
=> ΔABH = ΔDBH (c.g.c) (đpcm)
b) Vì ΔABH = ΔDBH (ý a)
=> \(\widehat{B_1}\) = \(\widehat{B_2}\) ( 2 góc tương ứng)
= BC là tia phân giác của \(\widehat{ABD}\) (đpcm)
c) Vì ΔABH = ΔDBH => AB = DB (2 cạnh tương ứng)
Xét ΔABC và ΔDBC có:
BC là cạnh chung
\(\widehat{B_1}\) = \(\widehat{B_2}\) (ý b)
AB = DB (cm tên)
=> ΔABC = ΔDBC(c.g.c)
=> \(\widehat{BAC}\) = \(\widehat{BDC}\) (2 góc tương ứng) (đpcm)
d) Vì ΔABH = ΔDBH (ý a)
=> AB = DB => \(\frac{1}{2}\)AB = \(\frac{1}{2}\)DB
=> NB = ND = \(\frac{1}{2}\)DB
=> N là trung điểm của BD(đpcm)
a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có
HB chung
HA=HD
Do đó: ΔABH=ΔDBH
b: Ta có: ΔABH=ΔDBH
nên \(\widehat{ABH}=\widehat{DBH}\)
hay BC là tia phân giác của góc ABD
Ta có hình vẽ:
a/ Xét tam giác ABH và tam giác DBH có:
BH: cạnh chung
\(\widehat{AHB}\)=\(\widehat{DHB}\)=900 (GT)
AH = HD (GT)
Vậy tam giác ABH = tam giác DBH (c.g.c)
b/ Ta có: tam giác ABH = tam giác DBH (câu a)
=> \(\widehat{ABH}\)=\(\widehat{DBH}\)( 2 góc tương ứng)
=> \(\widehat{ABC}\)=\(\widehat{DBC}\)
=> BC là phân giác của góc ABD (đpcm)
c/ Xét tam giác ABC và tam giác DBC có:
BC: cạnh chung
\(\widehat{ABC}\)=\(\widehat{DBC}\) (đã chứng minh)
AB = DB (vì tam giác ABH = tam giác DBH)
=> tam giác ABC = tam giác DBC (c.g.c)
=>\(\widehat{BAC}\)=\(\widehat{BDC}\)(2 góc tương ứng)
d/ Ta có: AB = DB (vì tam giác ABH = tam giác DBH)
Mà BM = AM
=> BN = DN
\(\Rightarrow\) Vậy N là trung điểm BD (đpcm)
a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có
HB chung
HA=HD
Do đó: ΔABH=ΔDBH
b: Ta có: ΔABH=ΔDBH
nên \(\widehat{ABH}=\widehat{DBH}\)
hay BC là tia phân giác của góc ABD
c: Xét ΔACD có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔACD cân tại C
Xét ΔBAC và ΔBDC có
BA=BD
AC=DC
BC chung
DO đó: ΔBAC=ΔBDC
Suy ra: \(\widehat{BAC}=\widehat{BDC}\)
\(\text{#TNam}\)
`a,`
Xét Tam giác `ABI` và Tam giác `MBI` có:
`\text {BI chung}`
\(\widehat{ABI}=\widehat{MBI} (\text {tia phân giác}\) \(\widehat{ABM} )\)
\(\widehat{BAI}=\widehat{BMI}=90^0\)
`=> \text {Tam giác ABI = Tam giác MBI (ch-gn)}`
`=> BA = BM (\text {2 cạnh tương ứng})`
Gọi `H` là giao điểm của `BI` với `AM`
Xét Tam giác `HAB` và Tam giác `HMB` có:
\(\text{BA = BM (CMT)}\)
\(\widehat{ABH}=\widehat{MBH} (\text {tia phân giác} \widehat{ABM})\)
`\text {BH chung}`
`=> \text {Tam giác HAB = Tam giác HMB (c-g-c)}`
`-> \text {HA = HM (2 cạnh tương ứng)}`
`->`\(\widehat{BHA}=\widehat{BHM} (\text {2 góc tương ứng})\)
Mà `2` góc này nằm ở vị trí kề bù
`->`\(\widehat{BHA}+\widehat{BHM}=180^0\)
`->`\(\widehat{BHA}=\widehat{BHM}=\)`180/2=90^0`
`-> \text {BH} \bot \text {AM}`
Ta có: \(\left\{{}\begin{matrix}BH\perp AM\\HA=HM\end{matrix}\right.\)
`->` \(\text{BI là đường trung trực của AM.}\)
`b,`
Xét Tam giác `BAC` và Tam giác `BMN` có:
\(\widehat{B} \) `\text {chung}`
`BA = BM (a)`
\(\widehat{BAC}=\widehat{BMN}=90^0\)
`=> \text {Tam giác BAC = Tam giác BMN (g-c-g)}`
`-> \text {BN = BC (2 cạnh tương ứng)}`
Xét Tam giác `BIN` và Tam giác `BIC` có:
`BN = BC (CMT)`
\(\widehat{NBI}=\widehat{CBI} (\text {tia phân giác} \widehat{NBC})\)
`\text {BI chung}`
`=> \text {Tam giác BIN = Tam giác BIC (c-g-c)}`
`-> \text {IN = IC (2 cạnh tương ứng)}`
`c,`
Gọi `K` là giao điểm của `BI` và `NC`
Xét Tam giác `NBK` và Tam giác `CBK` có:
`BN = BC (CMT)`
\(\widehat{NBK}=\widehat{CBK} (\text {tia phân giác} \widehat{NBC})\)
`\text {BK chung}`
`=> \text {Tam giác NBK = Tam giác CBK (c-g-c)}`
`->`\(\widehat{BKN}=\widehat{BKC} (\text {2 góc tương ứng})\)
Mà `2` góc này nằm ở vị trí kề bù
`->`\(\widehat{BKN}+\widehat{BKC}=180^0\)
`->`\(\widehat{BKN}=\widehat{BKC}=\)`180/2=90^0`
`-> \text {BK} \bot \text {NC}`
`-> \text {BI} \bot \text {NC (đpcm)}`