K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{#TNam}\)

`a,`

Xét Tam giác `ABI` và Tam giác `MBI` có:

`\text {BI chung}`

\(\widehat{ABI}=\widehat{MBI} (\text {tia phân giác}\) \(\widehat{ABM} )\)

\(\widehat{BAI}=\widehat{BMI}=90^0\)

`=> \text {Tam giác ABI = Tam giác MBI (ch-gn)}`

`=> BA = BM (\text {2 cạnh tương ứng})`

Gọi `H` là giao điểm của `BI` với `AM`

Xét Tam giác `HAB` và Tam giác `HMB` có:

\(\text{BA = BM (CMT)}\)

\(\widehat{ABH}=\widehat{MBH} (\text {tia phân giác} \widehat{ABM})\)

`\text {BH chung}`

`=> \text {Tam giác HAB = Tam giác HMB (c-g-c)}`

`-> \text {HA = HM (2 cạnh tương ứng)}`

`->`\(\widehat{BHA}=\widehat{BHM} (\text {2 góc tương ứng})\)

Mà `2` góc này nằm ở vị trí kề bù

`->`\(\widehat{BHA}+\widehat{BHM}=180^0\)

`->`\(\widehat{BHA}=\widehat{BHM}=\)`180/2=90^0`

`-> \text {BH} \bot \text {AM}`

Ta có: \(\left\{{}\begin{matrix}BH\perp AM\\HA=HM\end{matrix}\right.\)

`->` \(\text{BI là đường trung trực của AM.}\)

`b,`

Xét Tam giác `BAC` và Tam giác `BMN` có:

\(\widehat{B} \) `\text {chung}`

`BA = BM (a)`

\(\widehat{BAC}=\widehat{BMN}=90^0\)

`=> \text {Tam giác BAC = Tam giác BMN (g-c-g)}`

`-> \text {BN = BC (2 cạnh tương ứng)}`

Xét Tam giác `BIN` và Tam giác `BIC` có:

`BN = BC (CMT)`

\(\widehat{NBI}=\widehat{CBI} (\text {tia phân giác} \widehat{NBC})\)

`\text {BI chung}`

`=> \text {Tam giác BIN = Tam giác BIC (c-g-c)}`

`-> \text {IN = IC (2 cạnh tương ứng)}`
`c,`

Gọi `K` là giao điểm của `BI` và `NC`

Xét Tam giác `NBK` và Tam giác `CBK` có:

`BN = BC (CMT)`

\(\widehat{NBK}=\widehat{CBK} (\text {tia phân giác} \widehat{NBC})\)

`\text {BK chung}`

`=> \text {Tam giác NBK = Tam giác CBK (c-g-c)}`

`->`\(\widehat{BKN}=\widehat{BKC} (\text {2 góc tương ứng})\)

Mà `2` góc này nằm ở vị trí kề bù

`->`\(\widehat{BKN}+\widehat{BKC}=180^0\)

`->`\(\widehat{BKN}=\widehat{BKC}=\)`180/2=90^0`

`-> \text {BK} \bot \text {NC}`

`-> \text {BI} \bot \text {NC (đpcm)}`

loading...

31 tháng 5 2021

ai help mik bài này đc ko

 

31 tháng 5 2021

a) ΔABC vuông tại A 

Áp dụng định lý Pi-ta-go ta có: 

BC2 = AC2+AB2

⇒BC2-AC2=AB2

⇒100-64=AB2

⇒36=AB

⇒AB=6(cm)

b) Xét ΔAIB và ΔDIB có:

góc BAI = góc BDI (= 90 độ)

Chung IB

góc IBA = góc IBD (gt)

⇒ ΔAIB = ΔDIB (ch-gn)

⇒ BA = BD (2 cạnh tương ứng)

c)  Gọi giao BI và AD là F

Xét ΔABF và ΔDBF có:

AB = DB (cmb)

góc ABF = góc DBF (gt)

chung BF

⇒ ΔABF = ΔDBF (c.g.c)

⇒ FA = FD (2 cạnh tương ứng)

góc BFA = góc BFD (2 góc tương ứng) mà góc góc này kề bù nên góc BFA = góc BFD = 90 độ ⇒ BF⊥AD

Vì FA = FD, BF⊥AD ⇒ BI là đường trung trực của AD

d) Gọi giao của BI và EC là G

Xét ΔEBC có: CA⊥BE, ED⊥BC nên I là trọng tâm của ΔEBC nên BG là đường cao thứ 3 của ΔEBC ⇒ BG⊥EC ⇒ BI⊥EC

 

12 tháng 3 2018
a/ Áp dụng định lý Py - ta - go cho t/g ABC vuông tại A , có : Bc^2 = AB^2 + AC^2 = 6^2 + 8^2 = 36 + 64 = 100 = 10^2 Suy ra BC = 10 b/Ta có : góc IAB+ góc IBA+ góc BIA = 180 độ Có : góc IHB + góc IBH + góc BIH = 180 độ Suy ra góc IAB + góc IBA + góc BIA = góc IHB + góc IBH + góc BIH Mà góc IAB = góc IHB = 90 độ góc IBA = góc IBH ( BI là tia p/g góc B) Suy ra góc BIA= góc BIH Xét t/g ABI và t/g HBI có : Góc BIA = góc BIH(cmt) BI : cạnh chung Góc IBA = góc IBH ( BI là tia p/g góc B) Suy ra t/g ABI = t/g HBI ( g - c - g ) c/ Có t/g ABI = t/g HBI ( theo phần b) Suy ra AI = HI (2 cạnh t/ứng) Gọi M là giao điểm của BI và AH Xét t/g AIM và t/g HIM có : MI : cạnh chung Góc AIM = góc HIM ( c/m câu a) AI = HI ( cmt) Suy ra t/g AIM = t/g HIM ( c - g - c ) Suy ra AM = HM (1) và góc AMI = góc HMI ( 2 góc t/ứng) mà góc AMI + góc HMI = 180 độ (2 góc kề bù) Suy ra góc AMI = 90 độ suy ra BI vuông góc với AH (2) Từ (1) và (2) suy ra BI là đường trung trực của AH d/ Áp dụng đ/l Py - ta - go cho t/g IHC vuông tại H có : HI^2 = IC^2 - IC^2 suy ra HI
12 tháng 3 2018

a/ \(\Delta ABC\)vuông tại A => BC2 = AB2 + AC2 (định lí Pythagore)

=> BC2 = 62 + 82

=> BC = \(\sqrt{6^2+8^2}\)

=> BC = \(\sqrt{100}\)= 10 (cm)

b/ \(\Delta ABI\)vuông và \(\Delta HBI\)vuông có: \(\widehat{ABI}=\widehat{HBI}\)(BI là phân giác \(\widehat{B}\))

Cạnh huyền BI chung

=> \(\Delta ABI\)vuông = \(\Delta HBI\)vuông (ch - gn) (đpcm)

15 tháng 5 2016

A C B I D E

15 tháng 5 2016

a/ Áp dụng định lí Pytago vào tam giác vu6ong ABC ta được:

AB2=BC2-AC2=102-82=62

=> AB=6 cm.

b/ Xét tam giác ABI và tam giác DBI có:

BI chung

Góc IAB=IDB=90 độ

Góc IBA=IBD(phân giác IB)

=> Tam giác ABI=tam giác DBI(ch-gn)

c/ Gọi O là giao điểm AD và IB.

Vì tam giác ABI=tam giác DBI(câu b)

=> AB=BD(cạnh tương ứng)

Xét tam giác OBA và tam giác OBD có:

BO chung

Góc OBD=OBA(phân giác BI)

AB=BD(cmt)

=> Tam giác OBA=tam giác OBD(c-g-c)

=> OA=OD(cạnh tương ứng) và Góc AOB=DOB=180/2=90 độ

=> BI là đường trung trực của AD.

d/ Xét tam giác IAE và tam giác IDC có:

Góc AIE=DIC(đối đỉnh)

Góc IAE=IDC=90 độ

IA=ID(cạnh tương ứng của tam giác ABI=tam giác DBI)

=> Tam giác IAE=tam giác IDC(g-c-g)

=> AE=DC(cạnh tương ứng)

Mà AB=BD

=> BE=BC hay Tam giác BEC cân tại B

=> Góc BDA=BCE và 2 góc đó ở vị trí đồng vị nên AD//EC

Mà BI vuông góc với AD nên BI cũng vuông góc với EC.

Gọi N là giao điểm của BI và EC.

21 tháng 4 2022

Tham khảo:

 

 

a/ Áp dụng định lí Pytago vào tam giác vu6ong ABC ta được:

AB2=BC2-AC2=102-82=62

=> AB=6 cm.

b/ Xét tam giác ABI và tam giác DBI có:

BI chung

Góc IAB=IDB=90 độ

Góc IBA=IBD(phân giác IB)

=> Tam giác ABI=tam giác DBI(ch-gn)

c/ Gọi O là giao điểm AD và IB.

Vì tam giác ABI=tam giác DBI(câu b)

=> AB=BD(cạnh tương ứng)

Xét tam giác OBA và tam giác OBD có:

BO chung

Góc OBD=OBA(phân giác BI)

AB=BD(cmt)

=> Tam giác OBA=tam giác OBD(c-g-c)

=> OA=OD(cạnh tương ứng) và Góc AOB=DOB=180/2=90 độ

=> BI là đường trung trực của AD.

d/ Xét tam giác IAE và tam giác IDC có:

Góc AIE=DIC(đối đỉnh)

Góc IAE=IDC=90 độ

IA=ID(cạnh tương ứng của tam giác ABI=tam giác DBI)

=> Tam giác IAE=tam giác IDC(g-c-g)

=> AE=DC(cạnh tương ứng)

Mà AB=BD

=> BE=BC hay Tam giác BEC cân tại B

=> Góc BDA=BCE và 2 góc đó ở vị trí đồng vị nên AD//EC

Mà BI vuông góc với AD nên BI cũng vuông góc với EC.

Gọi N là giao điểm của BI và EC.

9 tháng 5 2022

tôi ko biết

a: Xét ΔBAI vuông tại Avà ΔBHI vuông tại H có

BI chung

góc ABI=góc HBI

=>ΔBAI=ΔBHI

b: ΔBAI=ΔBHI

=>BA=BH và IA=IH

=>BI là trung trực của AH

d: Xét ΔBKC có

KH,CA là đường cao

KH cắt CA tại I

=>I là trực tâm

=>BI vuông góc KC

b: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có 

BI chung

\(\widehat{ABI}=\widehat{DBI}\)

Do đó: ΔBAI=ΔBDI

Suy ra: BA=BD và IA=ID

Ta có: BA=BD

nên B nằm trên đường trung trực của AD\(\left(1\right)\)

Ta có: IA=ID

nên I nằm trên đường trung trực của AD\(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra BI là đường trung trực của AD

25 tháng 5 2022

Xét Δ ADB và Δ EDB có:

\(BDcạnhchung\)

\(\widehat{BAD}=\widehat{BED}\)

\(\widehat{ABD}=\widehat{EBD}\)

=> Δ ADB = Δ EDB 

 

Ta có:

AB = BE

=> △BAE cân tại B

Trong  △BAE cân tại B có:

BD là đường phân giác

=> BD là đường cao

=> BD ⊥ AE

 

Xét △ADF và △ ADC có:

\(\widehat{ADF}=\widehat{EDC}\)

AD = DE

\(\widehat{FAD}=\widehat{CED}\)

=> △ADF = △ ADC

=> FD = CD (2 cạnh tương ứng)

Ta có:

AF = AB + AF

BC = BE + EC

AB = BE

AF = EC

nên AF = BC

=> △FBC cân tại B

Trong △FBC cân tại B có:

BD là đường phân giác 

=> BD là đường cao

=> BD ⊥ FC

Ta có:

BD ⊥ AE

BD ⊥ FC

=> AE // FC

25 tháng 5 2022

muốn gửi ảnh mặt mộc típ ko:'')