9x-1=9 tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ⇔ |2x+3| = 8
⇒ \(\left[{}\begin{matrix}2x+3=8\\2x+3=-8\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}2x=5\\2x=-11\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{11}{2}\end{matrix}\right.\)
Vậy...
b) ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow3\sqrt{x}-7\sqrt{x}+6\sqrt{x}=8\)
\(\Leftrightarrow2\sqrt{x}=8\)
\(\Leftrightarrow\sqrt{x}=4\)
\(\Leftrightarrow x=16\) (Vì \(x\ge0\) )
Vậy x = 16
c) ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow\sqrt{9\left(x-1\right)}=12\)
\(\Leftrightarrow3\sqrt{x-1}=12\)
\(\Leftrightarrow\sqrt{x-1}=4\)
\(\Leftrightarrow x-1=16\)
\(\Leftrightarrow x=17\)(TM)
Vậy x = 17
\(\sqrt{x-1}\) - \(\sqrt{9x-9}\) + \(\sqrt{16x-16}\) = 4 (đk \(x\ge\)1)
\(\sqrt{x-1}-\) \(\sqrt{9\left(x-1\right)}\) + \(\sqrt{16\left(x-1\right)}\) = 4
\(\sqrt{x-1}\) - 3\(\sqrt{x-1}\) + \(4\sqrt{x-1}\) = 4
\(\sqrt{x-1}\)( 1 - 3 + 4 ) = 4
\(\sqrt{x-1}\) . 2 = 4
\(\sqrt{x-1}\) = 4 : 2
\(\sqrt{x-1}\) = 2
\(x-1\) =4
\(x=4+1\)
\(x=5\) (thỏa mãn)
Vậy \(x\) = 5
a: ĐKXĐ: x>=0
\(5\sqrt{x}-2=13\)
=>\(5\sqrt{x}=15\)
=>\(\sqrt{x}=3\)
=>x=9
b: ĐKXĐ: x>=-1
\(\sqrt{9x+9}+\sqrt{x+1}=20\)
=>\(3\sqrt{x+1}+\sqrt{x+1}=20\)
=>\(4\sqrt{x+1}=20\)
=>x+1=25
=>x=24
(1-3x2)-(x-2)(9x+1)=(3x-4)(3x+4)-9(x+3)2
⇒1-3x2-(9x2+x-18x-2)=9x2-16-9(x2+6x+9)
⇒1-3x2-(9x2-17x-2)= -56x-97
⇒1-3x2-9x2+17x+2=-56x-97
⇒3-12x2+17x=-56x-97
⇒3-12x2+17x+56x+97=0
⇒-12x2+73x+100=0
⇒-(12x2-73x-100)=0
Lời giải của các bạn đều thỏa mãn yêu cầu đề bài là phân tích đa thức thành nhân tử
9x-1=9
=>9x:9=9
=>9x=9.9
=>9x=92
=>x=2