Tìm số tự nhiên n sao cho 28+211+2n là số chính phương
Giải đầy đủ nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì n2+2n+12 là SC nên ta có \(n^2+2n+12=m^2\) (m là số tự nhiên)
\(=>\left(n^2+2n+1\right)+11=m^2=>\left(n+1\right)^2+11=m^2\)
\(=>m^2-\left(n+1\right)^2=11=>\left[m-\left(n+1\right)\right].\left[m+\left(n+1\right)\right]=11\)
\(=>\left(m-n-1\right).\left(m+n+1\right)=11=1.11=11.1\)
vì m,n là các số tự nhiên nên \(m-n-1< m+n+1\)
=>\(\left(m-n-1\right).\left(m+n+1\right)=1.11\)
=> \(\hept{\begin{cases}m-n-1=1\\m+n+1=11\end{cases}=>\hept{\begin{cases}m-n=2\\m+n=10\end{cases}}}\)
Cộng vế với vế:
\(\left(m-n\right)+\left(m+n\right)=2+10=12=>2m=12=>m=6\)
Từ đó suy ra n=4
Vậy n=4 thì n2+2n+12 là SCP
Đặt \(n^2+2n+12=a^2\Leftrightarrow\left(n+1\right)^{^2}+11=a^2\Leftrightarrow\left(n-a+1\right)\left(n+a+1\right)=-11\)
Do n và s là số tự nhien nên xét ước 11 rồi tìm n và a sau , sau đó kết luan n = 4
Vì n là số có 2 chữ số
→10≤n≤99→21≤2n+1≤199
Vì 2n+1 là số chính phương→2n+1∈{25;36;49,64;81;100;121;144;169;196}
Vì 2n+1 là số lẻ→2n+1∈{25;49;81;121;169}
Ta có bảng sau:
2n+1 | 25 | 49 | 81 | 121 | 169 |
n | 12 | 24 | 40 | 60 | 84 |
3n+1 | 37 | 73 | 121 | 181 | 253 |
Với n=40 thì 2n+1=81 là số chính phương và 3n+1=121 là số chính phương
Vậy n=40
Vì n là số có 2 chữ số
\(\rightarrow10\le n\le99\)\(\rightarrow21\le2n+1\le199\)
Vì 2n+1 là số chính phương\(\rightarrow2n+1\in\left\{25;36;49,64;81;100;121;144;169;196\right\}\)
Vì 2n+1 là số lẻ\(\rightarrow2n+1\in\left\{25;49;81;121;169\right\}\)
Ta có bảng sau:
2n+1 | 25 | 49 | 81 | 121 | 169 |
n | 12 | 24 | 40 | 60 | 84 |
3n+1 | 37 | 73 | 121 | 181 | 253 |
Với n=40 thì 2n+1=81 là số chính phương và 3n+1=121 là số chính phương
Vậy n=40
Gọi số tự nhiên cần tìm là n (n N; n 999)
n chia 8 dư 7 => (n+1) chia hết cho 8
n chia 31 dư 28 => (n+3) chia hết cho 31
Ta có ( n+ 1) + 64 chia hết cho 8 = (n+3) + 62 chia hết cho 31
Vậy (n+65) chia hết cho 31 và 8
Mà (31,8) = 1
=> n+65 chia hết cho 248
Vì n \(\le\)999 nên (n+65)\(\le\)1064
Để n là số tự nhiên lớn nhất thoả mãn điều kiện thì cũng phải là số tự nhiên lớn nhất thỏa mãn
\(\frac{n+65}{243}=4\)
=> n = 927
Vậy số tự nhiên cần tìm là : 927
theo bài ra ta có
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927
Gọi số tự nhiên cần tìm là n (n\(\in\)N; n\(\ne\)999)
Ta có: n chia 8 dư 7 => (n+1) chia hết cho 8
n chia 31 dư 28 => (n+3) chia hết cho 31
Ta có: ( n+ 1) + 64 chia hết cho 8=(n+3)+62 chia hết cho 31
Do đó (n+65) chia hết cho 31 và 8
Mà (31,8) = 1
=> n+65 chia hết cho 248
Vì n≤999 nên (n+65)≤1064
Để n là số tự nhiên lớn nhất thoả mãn điều kiện thì cũng phải là số tự nhiên lớn nhất thỏa mãn
\(\Rightarrow\)\(\frac{n+65}{243}=4\)
Ta có:n+65=243.4
n+65=972
n=972-65
n=907
Vậy n=907
Vậy số tự nhiên cần tìm là : 927
tim 2 so tu nhien lon nhat sao cho so do chia cho 7 du 4, chia cho 8 dư 7(có ai biết làm bài này ko, giúp mình với)
tạo hằng đẳng thức:
= (2^4)^2 + 2.2^4.2^6 + (2^6)^2 = (2^4 + 2^6)^2
=> n = 12
tạo hằng đẳng thức:
= (2^4)^2 + 2.2^4.2^6 + (2^6)^2 = (2^4 + 2^6)^2 là số chính phương
=> n=12