K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2020

Chứng tỏ nó bằng 1?!

Bg

Ta có: ƯCLN (3n + 2; 2n + 1)  (n \(\inℕ\))

Gọi ƯCLN (3n + 2; 2n + 1) là d  (d \(\inℕ^∗\))

Theo đề bài: 3n + 2 \(⋮\)d và 2n + 1 \(⋮\)d

=> 2.(3n + 2) - 3.(2n + 1) \(⋮\)d

=> 6n + 4 - (6n + 3) \(⋮\)d

=> 6n + 4 - 6n - 3 \(⋮\)d

=> (6n - 6n) + (4 - 3) \(⋮\)d

=> 1 \(⋮\)d

=> d = 1

Vậy ƯCLN (3n + 2; 2n + 1) = 1

13 tháng 12 2020

Bang 1

13 tháng 12 2020



 

ijpipj

3 tháng 1 2021

Gọi d la ƯCLN (3n+2; 2n+1)

\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}\Rightarrow\left(3n+2\right)-\left(2n+1\right)⋮d}\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\Leftrightarrow6n+4-6n-3⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ƯCLN (3n+2);(2n+1) =1 (đpcm)

17 tháng 1 2019

Ta có:

a)  ( 3 n   + 1 ) 2  - 25 = 3(3n - 4)(n + 2) chia hết cho 3;

b)  ( 4 n   + 1 ) 2  - 9 = 8(2n - 1)(n +1) chia hết cho 8.

17 tháng 12 2021

Gọi UCLN(3n+2,5n+3) la d

=>3n+2 chia hết cho d=>15n+10 chia hết cho d

=>5n+3 chia hết cho d=>15n+9 chia hết cho d

=>(15n+10)-(15n+9) chia hết cho d

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy 3n+2 và 5n+3 là 2 số nguyên tố cùng nhau

17 tháng 12 2021

Gọi UCLN(3n+2,5n+3) la d

=>3n+2 chia hết cho d=>15n+10 chia hết cho d

=>5n+3 chia hết cho d=>15n+9 chia hết cho d

=>(15n+10)-(15n+9) chia hết cho d

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy 3n+2 và 5n+3 là 2 số nguyên tố cùng nhau

3 tháng 2 2021

Đặt ƯCLN \(3n+2;2n+1=d\)

\(3n+2⋮d\Rightarrow6n+4⋮d\)

\(2n+1\Rightarrow6n+3⋮d\)

\(\Rightarrow6n+4-6n-3⋮d\Rightarrow1⋮d\Rightarrow d=1\)( đpcm )