Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng tỏ nó bằng 1?!
Bg
Ta có: ƯCLN (3n + 2; 2n + 1) (n \(\inℕ\))
Gọi ƯCLN (3n + 2; 2n + 1) là d (d \(\inℕ^∗\))
Theo đề bài: 3n + 2 \(⋮\)d và 2n + 1 \(⋮\)d
=> 2.(3n + 2) - 3.(2n + 1) \(⋮\)d
=> 6n + 4 - (6n + 3) \(⋮\)d
=> 6n + 4 - 6n - 3 \(⋮\)d
=> (6n - 6n) + (4 - 3) \(⋮\)d
=> 1 \(⋮\)d
=> d = 1
Vậy ƯCLN (3n + 2; 2n + 1) = 1
Gọi d la ƯCLN (3n+2; 2n+1)
\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}\Rightarrow\left(3n+2\right)-\left(2n+1\right)⋮d}\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\Leftrightarrow6n+4-6n-3⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ƯCLN (3n+2);(2n+1) =1 (đpcm)
Câu trả lời hay nhất: Gọi d = (12n + 1 , 30n + 2)
=> 12n + 1 chia hết cho d và 30n + 2 chia hết cho d
=> 5(12n + 1) - 2(30n + 2) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau
Gọi d là ƯCLN(2n+1, 3n+2)
Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d
=> 2(3n+2) - 3(2n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau
Ta có 2n+1 =6n+3
3n+2=6n+4
gọi d là ước của 6n+3 và 6n+4
Ta có (6n+3)-(6n+4) chia hết cho d
=> 1 chia hết cho d
=> d=1
vậy 2n+1 vafn+2 là 2 số nguyên tố cùng nhau
a,Gọi d là UCLN(2n+1;3n+2)
Ta có:
3n+2 chia hết cho d
2n+1 chia hết cho d
=> 2(3n+2)-3(n+1)=1 chia hết cho d
=> d E {-1;1}
=> 2n+1 và 3n+2 luôn nguyên tố cùng nhau
=> BCNN(2n+1,3n+2)=(2n+1)(3n+2) (ĐPCM)
b, Gọi a là UCLN(2n+1;9n+6)
=> 2n+1 chia hết cho a
9n+6 chia hết cho a
=> 2(9n+6)-9(2n+1) chia hết cho a
=> 3 chia hết cho a=> a E {3;-3;1;-1}
Ta có: 9n+6 thì chia hết cho 3 nhưng 2n+1 thì chưa chắc
2n+1 chia hết cho 3 <=> n=3k+1 (k E N)
Vậy: UCLN(2n+1;9n+6)=3 <=> n=3k+1
còn nếu n khác: 3k+1
=> UCLN(2n+1;9n+6)=1
gọi d là ước chung của 2n+1 và 3n+2
ta có 2n+1 chia hết cho d
3n+2 chia hết cho d
=>3n+2-(2n+1) chia hết cho d
=>1n+1 chia hết cho d
mà n+1 chỉ có Ư là 1
=>2n+1 phần 3n+1 là p/s tối giản
gọi UCLN(2n+1;3n+2)=d
ta có: 2n+1 chia heetscho d và 3n+2 chia hết cho d
=>2(3n+2)-3(2n+1) chia hết cho d
=>(6n+4)-(6n+3)chia hết cho d
=>1 chia heetscho d
=>d=1
Vậy phân số 2n+1/3n+2 là phân số tối giãn
~~~hocj giỏi~~~
Đặt ƯCLN \(3n+2;2n+1=d\)
\(3n+2⋮d\Rightarrow6n+4⋮d\)
\(2n+1\Rightarrow6n+3⋮d\)
\(\Rightarrow6n+4-6n-3⋮d\Rightarrow1⋮d\Rightarrow d=1\)( đpcm )