Cho tam giác ABC , gọi D là trung điểm AB , trên cạnh AC lấy E sao cho AE = 2EC . Gọi O là giao điểm của CD và BE . Chứng minh BO = 3 EO
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ E dựng đường thẳng //AB cắt CD tại I và BC tại K
=> \(\frac{CE}{CA}=\frac{CK}{CB}=\frac{1}{3}\) (Talet trong tg) (1)
Xet tam giác ADC có \(\frac{CE}{CA}=\frac{IE}{DA}\) (Talet trong tg) (2)
Xét tg BDC có \(\frac{CK}{CB}=\frac{IK}{DB}\) (Talet trong tg) (3)
Từ (1) (2) và (3) \(\Rightarrow\frac{IE}{DA}=\frac{IK}{DB}=\frac{1}{3}\) Mà \(DA=DB\Rightarrow IE=IK\Rightarrow\frac{IE}{DB}=\frac{1}{3}\)
Xét tg OIE và tg ODB có
\(\widehat{OEI}=\widehat{OBD}\) (góc so le trong)
\(\widehat{EOI}=\widehat{BOD}\) (góc đối đỉnh)
=> tg OIE đồng dạng với tg ODB (g.g.g)\(\Rightarrow\frac{EO}{BO}=\frac{IE}{DB}=\frac{1}{3}\Rightarrow BO=3EO\)
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
b: Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
Xét ΔBOD và ΔCOE có
\(\widehat{ODB}=\widehat{OEC}\)
DB=EC
\(\widehat{DBO}=\widehat{ECO}\)
Do đó: ΔBOD=ΔCOE
a: Xét ΔABE và ΔACD có
AB=AC
\(\stackrel\frown{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
ΔBEA= ΔCDA (chứng minh trên)
⇒∠(B1 ) =∠(C1 ) ;∠(E1 ) =∠(D1 ) (hai góc tương ứng) (1)
+) Ta có: ∠(E1 ) +∠(E2 ) =180o (hai góc kề bù) (2)
Và ∠(D1 ) +∠(D2 ) =180o (hai góc kề bù) (3)
Từ (1); (2) và (3) suy ra: ∠(E2 ) =∠(D2 )
+) Theo giả thiết ta có; AB = AC
Và AD = AE
Lấy vế trừ vế, suy ra:
AB - AD = AC - AE hay BD = CE
Xét ΔOEC và ΔOCE, ta có:
∠(D2 ) =∠(E2 ) (chứng minh trên)
DB=EC (chứng minh trên)
∠(B1 ) =∠(C1 ) (chứng minh trên)
Suy ra: ΔODB= ΔOCE ( g.c.g)
a/ Xét 2 tam giác BDE và CED có
BD=EC
DE chung
Góc BDE = góc DEC do chúng lần lượt bù với 2 góc bằng nhau là ADE và AED
=> dpcm (c.g.c)
b/ Có góc DKB bằng góc EKC do đối đỉnh
KD=KE
góc BDK=góc CEK
Vậy tam giác BOD = tam giác COE
a/ Xét tam giác ABE và tam giác ACD có :
AD = AE , góc A là góc chung của hai tam giác , AB = AC
=> tam giác ABE = tam giác ACD => CD = BE
b/ Dễ dàng chứng minh đc tam giác BED = tam giác CDE (c.c.c)
=> góc CED = góc CDE => tam giác ODE cân tại O => OD = OE (1)
Lại có BE = CD => OB = OC (2) ; góc BOD = góc EOC (đối đỉnh) (3)
Từ (1) , (2) , (3) suy ra tam giác BOD = tam giác OCE (c.g.c)