Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE và ΔACD có
AB=AC
\(\stackrel\frown{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
A B C D E O H
Cm: a) Xét t/giác ABE và t/giác ACD
có: AB = AC (gt)
\(\widehat{A}\) :chung
AE = AD (gt)
=> t/giác ABE = t/giác ACD (c.g.c)
=> BE = CD (2 cạnh t/ứng)
b)Ta có: AD + DB = AB
AE + EC = AC
mà AD = AE (gt) ; AB = AC (gt)
=> BD = EC
Ta lại có: \(\widehat{ADC}+\widehat{CDB}=180^0\) (kề bù)
\(\widehat{AEB}+\widehat{BEC}=180^0\)(kề bù)
mà \(\widehat{ADC}=\widehat{AEB}\)(vì t/giác ABE = t/giác ACD)
=> \(\widehat{BDC}=\widehat{BEC}\)
Xét t/giác BOD và t/giác COE
có: \(\widehat{DBO}=\widehat{OCE}\) (vì t/giác ABE = t/giác ACD)
BD = EC (cmt)
\(\widehat{BDO}=\widehat{OEC}\) (cmt)
=> t/giác BOD = t/giác COE (g.c.g)
c) Xét t/giác ABO và t/giác ACO
có: AB = AC (gT)
OB = OC (vì t/giác BOD = t/giác COE)
AO : chung
=> t/giác ABO = t/giác ACO (c.c.c)
=> \(\widehat{BAO}=\widehat{CAO}\) (2 góc t/ứng)
=> AO là tia p/giác của \(\widehat{A}\)
d) Xét t/giác ABH và t/giác ACH
có: AB = AC (gt)
\(\widehat{BAH}=\widehat{CAH}\)(cmt)
AH : chung
=> t/giác ABH = t/giác ACH (c.g.c)
=> \(\widehat{BHA}=\widehat{CHA}\) (2 góc t/ứng)
Mà \(\widehat{BHA}+\widehat{CHA}=180^0\) (kề bù)
=> \(\widehat{BHA}=\widehat{CHA}=90^0\) => AH \(\perp\)BC (Đpcm)
ΔBEA= ΔCDA (chứng minh trên)
⇒∠(B1 ) =∠(C1 ) ;∠(E1 ) =∠(D1 ) (hai góc tương ứng) (1)
+) Ta có: ∠(E1 ) +∠(E2 ) =180o (hai góc kề bù) (2)
Và ∠(D1 ) +∠(D2 ) =180o (hai góc kề bù) (3)
Từ (1); (2) và (3) suy ra: ∠(E2 ) =∠(D2 )
+) Theo giả thiết ta có; AB = AC
Và AD = AE
Lấy vế trừ vế, suy ra:
AB - AD = AC - AE hay BD = CE
Xét ΔOEC và ΔOCE, ta có:
∠(D2 ) =∠(E2 ) (chứng minh trên)
DB=EC (chứng minh trên)
∠(B1 ) =∠(C1 ) (chứng minh trên)
Suy ra: ΔODB= ΔOCE ( g.c.g)
a.Xét tam giác DBC và tam giác ECB có:
DB=EC (AB=AC và AD=AE)
góc ABC = góc ACB (cân tại A)
BC là cạnh chung
Do đó tam giác DBC = tam giác ECB (c.g.c)
Suy ra BE= CD (ĐPCM)
a) ta có : AB=AC
Suy ra tam giac ABC cân
Xét tam giac ABE và tam giác ADE ta có
AB=AC(gt)
góc B=gócC(tính chất tam giác cân)
AD=AE(gt)
Suy ra tam giác ABE=tam giac ACD( c.g.c)
Suy ra BE=CD( hai cạnh tương ứng )
b) Ta có O nằm trên cạnh DC và BE
Suy ra DO=EO( DC=BE)
XÉT tam giác ADO và tam giác AEO ta có
AD=AE(gt)
AOchung
DO=EO( chứng minh trên)
Suy ra tam giác AOD = tam giác AEO(c.c.c)
Suy ra góc A1=A2 ( 2 góc tương ứng)
Suy ra AOlà tia phân giác của góc A
Bài 1:
Xét ΔADO vuông tại D và ΔAEO vuông tại E có
AO chung
\(\widehat{DAO}=\widehat{EAO}\)
Do đó: ΔADO=ΔAEO
Suy ra: OD=OE
Bài 2:
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
b: Xét ΔBDC và ΔCEB có
BD=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
DO đó: ΔBDC=ΔCEB
Suy ra: \(\widehat{ODB}=\widehat{OEC}\)
Xét ΔODB và ΔOEC có
\(\widehat{ODB}=\widehat{OEC}\)
BD=CE
\(\widehat{DBO}=\widehat{ECO}\)
Do đó: ΔODB=ΔOEC