Cho tứ diện ABCD có B A C ^ = C A D ^ = D A B ^ = 90 0 , A B = 1 , A C = 2 , A D = 3 . Côsin của góc giữa hai mặt phẳng (ABC) và (BCD) là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa đề: AD//BC
Ta có: AD\(\perp\)AB(gt)
BC\(\perp\)AB(gt)
Do đó: AD//BC(Định lí 1 từ vuông góc tới song song)
b) Ta có: AD//BC(cmt)
nên \(\widehat{D}+\widehat{C}=180^0\)(hai góc trong cùng phía)
\(\Leftrightarrow4\cdot\widehat{C}=180^0\)
hay \(\widehat{C}=45^0\)
Ta có: \(\widehat{D}=3\cdot\widehat{C}\)
nên \(\widehat{D}=135^0\)
a) Có AD ⊥ AB( góc A vuông)
BC ⊥ AB( góc B vuông)
=> AD // BC
b) Có tứ giác ABCD= 360 độ
mà A = B= 90 độ
=> C + D= ABCD - A - B
= 360 độ - 90 độ - 90 độ
= 180 độ
Có D = 3C và C + D = 180 độ
=> C = 45 độ
=> D = 135 độ
c) Có ABCD= 360 độ
A = B= 90 độ
=> C + D= 180 độ
=> D =180 độ - C
+) D - C = 30 độ
<=> 180 độ - C - C = 30 độ
<=> 2C= 150 độ
<=> C = 75 độ
=> D = 105 độ
Vậy a) AD // BC
b) C = 45 độ
D = 135 độ
c) C = 75 độ
D = 105 độ
\(S_{\Delta ACD}=\dfrac{1}{2}AC.AD.sin\widehat{CAD}=\dfrac{a^2\sqrt{3}}{4}\)
\(V=\dfrac{AB.AC.AD}{6}.\sqrt{1+2cos90^0.cos60^0.cos120^0-cos^290^0-cos^260^0-cos^2120^0}=\dfrac{a^3\sqrt{2}}{12}\)
\(\Rightarrow d\left(B;\left(ACD\right)\right)=\dfrac{3V}{S}=\dfrac{a\sqrt{6}}{3}\)
Chọn B
Mà ∠ B = ∠ A + 10 ° (2)
nên từ (1) và (2) => ∠ C - 10 ° = ∠ A + 10 ° => ∠ C = ∠ A + 20 °
Ta có: ∠ D = ∠ C + 10 ° => ∠ D = ∠ A + 20 ° + 10 ° => ∠ D = ∠ A + 30 °
Ta có : ∠ A+ ∠ B+ ∠ C+ ∠ D = 360 ° ( tổng bốn góc của tứ giác)
=> ∠ A+ ∠ A + 10 ° + ∠ A + 20 ° + ∠ A + 30 ° = 360 °
=> 4 ∠ A + 60 ° = 360 °
Do đó: ∠ A= 75 °
=> ∠ B = ∠ A + 75 ° + 10 ° = 85 °
=> ∠ C= ∠ A+ 20 ° = 95 °
=> ∠ D= ∠ A+ 30 ° = 105 °
a) C−D=20o
Mà ta có C+D=360o−(A+B)=360o−(60o+90o)=210o (tổng 4 góc trong một tứ giác bằng 360o)
⇔C−D+C+D=20o+210o
⇔2C=230o
⇒C=115o và D=95o
Góc ngoài của tứ giác tại đỉnh C là 180o−115o=65o
Xét tứ giác ABCD có:
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)( tổng các góc trong tứ giác)
\(\Rightarrow\widehat{C}+\widehat{D}=360^0-\widehat{A}-\widehat{B}=360^0-60^0-90^0=210^0\)
Ta có: \(\left\{{}\begin{matrix}\widehat{C}+\widehat{D}=210^0\\\widehat{C}-\widehat{D}=20^0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{C}=\left(210^0+20^0\right):2=115^0\\\widehat{D}=\left(210^0-20^0\right):2=95^0\end{matrix}\right.\)
a: Xét tứ giác ABCD có
\(\widehat{A}+\widehat{C}=180^0\)
Do đó: ABCD là tứ giác nội tiếp
Xét tứ giác ABCD có \(\widehat{A}+\widehat{C}=180^0\)
nên ABCD là tứ giác nội tiếp
a) \(a^2+b^2+c^2+d^2=ab+bc+ac+cd.\)
<=>\(2a^2+2b^2+2c^2+2d^2=2ab+2ac+2bc+2cd\)
<=>\(2a^2+2b^2+2c^2+2d^2-2ab-2bc-2ac-2cd=0\)
<=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)+\left(d^2-2cd+c^2\right)\)=0
<=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(d-c\right)^2=0\)
=>a=b=c=d
=> ABCD là hình thoi