K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

a) C−D=20o

Mà ta có C+D=360o−(A+B)=360o−(60o+90o)=210o (tổng 4 góc trong một tứ giác bằng 360o)

⇔C−D+C+D=20o+210o

⇔2C=230o

⇒C=115o và D=95o

Góc ngoài của tứ giác tại đỉnh C là 180o−115o=65o

26 tháng 8 2021

Xét tứ giác ABCD có:

\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)( tổng các góc trong tứ giác)

\(\Rightarrow\widehat{C}+\widehat{D}=360^0-\widehat{A}-\widehat{B}=360^0-60^0-90^0=210^0\)

Ta có: \(\left\{{}\begin{matrix}\widehat{C}+\widehat{D}=210^0\\\widehat{C}-\widehat{D}=20^0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\widehat{C}=\left(210^0+20^0\right):2=115^0\\\widehat{D}=\left(210^0-20^0\right):2=95^0\end{matrix}\right.\)

12 tháng 9 2021

tổng 2 góc d và c  là

360-90-60=210 a, nếu c-d=20 thì 

C= ( 210+20) : 2= 115o

D= 210-115=95o

b, nếu C= 3/4 D thì

C= 3/4+3 ( C+D)

C= 3/7 210=90o

D= 90: 3/4=120o

2 tháng 9 2019

a) Vì ABCD là tứ giác nên \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\Rightarrow\widehat{C}+\widehat{D}=360^0-90^0-60^0=210^0\)

\(\orbr{\begin{cases}\widehat{C}-\widehat{D}=20^0\\\widehat{C}+\widehat{D}=210^0\end{cases}}\Rightarrow\widehat{C}=\frac{210^0+20^0}{2}=115^0\)

\(\widehat{D}=210^0-115^0=95^0\)

Góc ngoài của C là : \(180^0-115^0=65^0\)

Tương tự câu  2 bạn làm thôi nhé

2 tháng 9 2019

Dũng Lê Trí bạn có thể làm câu b luôn đc ko ạ

20 tháng 7 2016

Trong tứ giác ABCD, ta có: A+B+C+D=360° => A+120°+90°+60°=360° => A=360°-120°-90°-60°=90°

20 tháng 7 2016

Vậy góc ngoài tại A bằng 180°-90°=90°

12 tháng 7 2021

Ta có: ˆA+ˆB+ˆC+ˆD=360oA^+B^+C^+D^=360o

⇒ˆA+120độ+60độ+90độ=360độ⇒A^+120độ+60độ+90độ=360độ

⇒ˆA=360độ−90độ−60độ−120độ=90 độ

25 tháng 10

 

Cho tứ giấc abcd có c=80 độ a-b =10 độ tính a

Tính ac  

 

 

 

a: Xét tứ giác ABCD có 

\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)

\(\Leftrightarrow\widehat{C}+\widehat{D}=210^0\)

mà \(\widehat{C}-\widehat{D}=20^0\)

nên \(2\cdot\widehat{C}=230^0\)

\(\Leftrightarrow\widehat{C}=115^0\)

\(\Leftrightarrow\widehat{D}=95^0\)

Số đo góc ngoài tại đỉnh C là: \(180^0-115^0=65^0\)

b: Ta có: \(\widehat{C}+\widehat{D}=210^0\)

\(\Leftrightarrow\widehat{D}\cdot\dfrac{7}{4}=210^0\)

\(\Leftrightarrow\widehat{D}=120^0\)

\(\Leftrightarrow\widehat{C}=90^0\)

Số đo góc ngoài tại đỉnh C là: \(180^0-90^0=90^0\)

27 tháng 7 2018

Vẽ hình, gọi A1 là góc trong còn A2 là góc ngoài tại A

Ta có: \(\widehat{A_1}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\) (Tổng 4 góc của tứ giác)

\(\Rightarrow\widehat{A}_1+120^0+60^0+90^0=360^0\)

\(\Rightarrow\widehat{A_1}=360^0-120^0-60^0-90^0=90^0\)

Ta có: \(\widehat{A_1}+\widehat{A_2}=180^0\) (kề bù)

\(\Rightarrow90^0+\widehat{A_2}=180^0\Rightarrow\widehat{A_2}=90^0\)

Vậy ....

27 tháng 7 2018

trong tứ giác ABCD có: góc A+ góc B+ góc C+ góc D=360 độ

thay số: góc A+ 120 độ + 60 độ+ 90 độ= 360 độ 

suy ra: góc A= 360 độ -120 độ -60 độ- 90 độ=90 độ

góc ngoài tại A= 180 độ - góc A

thay số: góc ngoài tại A=180 độ-90 độ=90 độ

Vậy góc A=90 độ, góc ngoài của A=90 độ

25 tháng 7 2018

1. Áp dụng định lý  tổng 3 góc vào tam giác ICD , bạn tính được góc ICD +góc IDC = 75 độ

Mà góc BCD = 2 góc ICD và góc ADC = 2 góc IDC nên góc BCD + góc ADC = 2.75 = 150 độ

Xét tứ giác ABCD có: góc A + góc B + góc BCD + góc ADC = 360 độ

                                 góc A + 90 độ + 150 độ = 360 độ

                                 góc A = 120 độ

2. góc C của tứ giác là: 180 độ -130 độ = 50 độ

Chúc bạn học tốt.