K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2016

Ta có: 17n(17n+1)(17n+2) là tích 3 số tự nhiên liên tiếp nên chia hết cho 3

Mà (17;3)=1 

=>17n không chia hết cho 3

=>(17n+1)(17n+2) chia hết cho 3       (đpcm)

 17n; 17n+1; 17n+2 là 3 số nguyên liên tiếp nên có đúng một số chia hết cho 3 
* nếu n chia hết cho 3 => 17n chia hết cho 3 => (17n+1) và (17n+2) đều không chia hết cho 3, mà 3 là số nguyên tố => (17n+1)(17n+2) không chia hết cho 3 

* 17 và 3 là hai số nguyên tố cùng nhau nên nếu n không chi hết cho 3 thì 17n cũng không chia hết cho 3 => (17n+1) hoặc (17n+2) có một số chia hết cho 3 
=> (17n+1)(17n+2) chia hết cho 3 

Tóm lại: (17n+1)(17n+2) chia hết cho 3 khi và chỉ khi n không chia hết cho 3 
------------------------------ 
Giải xong câu 2 là hiểu ngay bạn ghi đó là các số mủ 
17ⁿ, 17ⁿ+1 và 17ⁿ+2 là 3 số tự nhiên liên tiếp, nên có một số chia hết cho 3, mà 17ⁿ không chia hết cho 3, nên một trong hai số 17ⁿ+1 hoặc 17ⁿ+2 chia hết cho 3 

=> (17ⁿ+1)(17ⁿ+2) chia hết cho 3 

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Bạn viết lại biểu thức để mọi người đọc rõ hơn.

2 tháng 11 2016

17n; 17n+1; 17n+2 là 3 số nguyên liên tiếp nên có đúng một số chia hết cho 3 

* nếu n chia hết cho 3 => 17n chia hết cho 3 => (17n+1) và (17n+2) đều không chia hết cho 3, mà 3 là số nguyên tố => (17n+1)(17n+2) không chia hết cho 3 

* 17 và 3 là hai số nguyên tố cùng nhau nên nếu n không chi hết cho 3 thì 17n cũng không chia hết cho 3 => (17n+1) hoặc (17n+2) có một số chia hết cho 3 

=> (17n+1)(17n+2) chia hết cho 3 

Tóm lại: (17n+1)(17n+2) chia hết cho 3 khi và chỉ khi n không chia hết cho 3 

------------------------------ 

Giải xong câu 2 là hiểu ngay bạn ghi đó là các số mủ 

17ⁿ, 17ⁿ+1 và 17ⁿ+2 là 3 số tự nhiên liên tiếp, nên có một số chia hết cho 3, mà 17ⁿ không chia hết cho 3, nên một trong hai số 17ⁿ+1 hoặc 17ⁿ+2 chia hết cho 3 

=> (17ⁿ+1)(17ⁿ+2) chia hết cho 3 

2 tháng 11 2016

* 17 và 3 là hai số nguyên tố cùng nhau nên nếu n không chia hết cho 3 thì 17n cũng không chia hết cho 3 => (17n+1) hoặc (17n+2) có một số chia hết cho 3 
=> (17n+1)(17n+2) chia hết cho 3 

a) Gọi 3 số tự nhiên liên tiếp là x,x+1,x+2(x∈N)

- Nếu x=3k ( thỏa mãn ). Nếu x=3k+1 thì x+2=3k+1+2=(3k+3)⋮3

- Nếu x=3k+2 thì x+1=3k+1+2=(3k+3)⋮3

Vậy trong 3 số tự nhiên liên tiêp có 1 số chia hết cho 3.

b) Nhận thấy 17n,17n+1,17n+2 là 3 số tự nhiên liên tiếp. Mà 17n không chia hết cho 3, nên trong 2 số còn lại 1 số phải ⋮3

Do vậy: 

6 tháng 2 2021

Tự làm hay cop bạn ?

25 tháng 12 2021

+ Với \(n=1\Rightarrow A=17+1=18⋮9.\)

+ Giả sử với \(n=k\Rightarrow A=17k+111...1⋮9\) (k chữ số 1)

+ Với \(n=k+1\Rightarrow A=17\left(k+1\right)+111...1\) (k+1 chữ số 1)

\(\Rightarrow A=17k+17+10.111...1+1\) (k chữ số 1)

\(\Rightarrow A=\left(17k+111...1\right)+9.111...1+18\)

Ta thấy

\(17k+111...1⋮9\) (k chữ số 1)

\(9.111...1+18⋮9\)

\(\Rightarrow A⋮9\)

Theo nguyên lý phương pháp quy nạp \(\Rightarrow A⋮9\forall n\)

10 tháng 5 2022

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20 tháng 11 2015

1)

gọi ba số tự nhiên liên tiếp là a;a+1;a+2

ta có :

a+(a+1)+(a+2)=3.a+3=3.(a+1) chia hết cho 3

=>dpcm

2) gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2a;a+3;a+4

ta có :a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5a+2.5=5(a+2) chia hết cho 5

=>dpcm

20 tháng 11 2015

Câu hỏi tương tự.