K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

Chọn C

                                 

21 tháng 8 2018

10 tháng 7 2017

Đáp án D

 

NV
14 tháng 3 2022

a. Gọi cạnh lập phương là a

Ta có: \(AC=\sqrt{AB^2+AD^2}=a\sqrt{2}\) 

\(AH=\sqrt{AD^2+DH^2}=a\sqrt{2}\)

\(CH=\sqrt{CD^2+DH^2}=a\sqrt{2}\)

\(\Rightarrow\Delta ACH\) đều \(\Rightarrow\widehat{CAH}=60^0\)

b.

Do \(B'C||A'D\Rightarrow\) góc giữa A'B và B'C bằng góc giữa A'B và A'D

Tương tự câu a, ta có tam giác A'BD đều \(\Rightarrow\widehat{BA'D}=60^0\)

c.

Do IJ song song SB (đường trung bình), CD song song AB \(\Rightarrow\) góc giữa IJ và CD bằng góc giữa SB và AB

Tam giác SAB đều (các cạnh bằng a) \(\Rightarrow\widehat{SBA}=60^0\)

d.

\(\overrightarrow{EG}=\overrightarrow{AC}\Rightarrow\widehat{\left(\overrightarrow{AF};\overrightarrow{EG}\right)=\widehat{\left(\overrightarrow{AF};\overrightarrow{AC}\right)}=\widehat{FAC}=60^0}\) do tam giác FAC đều 

14 tháng 3 2022

Thầy ơi thầy giúp em dạng này với ạ, em sắp thi rồi ạ :'((  https://hoc24.vn/cau-hoi/a-co-bao-nhieu-gia-tri-cua-a-de-limlimits-xrightarrowinftyleftsqrtx2-ax2021-x1righta2b-tim-a-de-ham-so-fxleftbeginmatrixdfracx31x1khixne-13akhix-1end.5243579572507

4 tháng 9 2018

Đáp án D

Gọi I là giao điểm của AC và BD

A I ⊥ B D A I ⊥ B B ' ⇒ A I ⊥ ( B B ' D ' D ) ⇒ B’I là hình chiếu vuông góc của AB’ lên (BB’D’D)

4 tháng 6 2019

16 tháng 12 2017

 

Đáp án D

Gọi I là giao điểm của AC và BD

A I ⊥ B D A I ⊥ B B ' ⇒ A I ⊥ B B ' D ' D

=> B’I là hình chiếu vuông góc của AB’ lên (BB’D’D)

23 tháng 5 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta lại có AB′  ⊥  SC nên suy ra AB′ ⊥ (SBC). Do đó AB′  ⊥  B′C

Chứng minh tương tự ta có AD′  ⊥  D′C.

Vậy ∠ ABC =  ∠ AB′C =  ∠ AC′C =  ∠ AD′C =  ∠ ADC = 90 °

Từ đó suy ra 7 điểm A, B, C, D, B’, C’, D’ cùng nằm trên mặt cầu đường kính là AC.

15 tháng 8 2017

2 tháng 2 2018

Đáp án B