Tìm x \(\frac{x+2}{x-1}\)>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:\(x\ne\pm2;x\ne-3;x\ne0\)
\(P=1+\frac{x-3}{x^2+5x+6}\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right]\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left(\frac{2}{x-2}-\frac{x}{x^2-4}-\frac{1}{x+2}\right)\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\cdot\frac{2x+4-x-x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=1+\frac{8\left(x-3\right)}{\left(x+2\right)^2\left(x+3\right)\left(x-2\right)}\)
Đề sai à ??
1. x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)
2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)
3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)
áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
\(A=\left(\frac{x\sqrt{x}}{\sqrt{x}-1}-\frac{x^2}{x\sqrt{x}-x}\right)\left(2-\frac{1}{\sqrt{x}}\right)\left(ĐKXĐ:0< x;x\ne1\right)\)
\(A=\left(\frac{x^2\sqrt{x}}{x\left(\sqrt{x}-1\right)}-\frac{x^2}{x\left(\sqrt{x}-1\right)}\right)\left(\frac{2\sqrt{x}-1}{2\sqrt{x}}\right)\)
\(A=\left(\frac{x^2\left(\sqrt{x}-1\right)}{x\left(\sqrt{x}-1\right)}\right)\left(\frac{2\sqrt{x}-1}{2\sqrt{x}}\right)\)
\(A=x.\left(\frac{2\sqrt{x}-1}{2\sqrt{x}}\right)\)
\(A=\frac{x\left(2\sqrt{x}-1\right)}{2\sqrt{x}}\)
b)Tại A=0(ĐKXĐ:0<x;x khác 1) ta đc:
\(A=\frac{x\left(2\sqrt{x}-1\right)}{2\sqrt{x}}=0\)
\(\Leftrightarrow x\left(2\sqrt{x}-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2\sqrt{x}-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\left(kOTM\right)\\x=\frac{1}{4}\end{cases}}\)
Vậy tại A=0 x=1/4
Tại A=3(ĐKXĐ:0<x;x khác 1) ta đc:
\(\frac{x\left(2\sqrt{x}-1\right)}{2\sqrt{x}}=3\)
\(\Leftrightarrow2\sqrt{x}^3-x=6\sqrt{x}\)
\(\Leftrightarrow x=0\left(koTM\right)\)