Chứng minh nếu a\(\in\)Z mà không chia hết cho 5 và 7 thì : (a4-1).(a4+15a2+1) chia hết cho 35
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^4-1 = (a-1)(a+1)(a^2+1)
Nếu a chia 5 du 1 suy ra n-1 chia het cho 5
Nêu a chia 5 du 2 suy ra n^2 chia 5 du 4 suy ra n^2+1 chia het cho 5 (dùng đồng dư)
tương tự với a chia 5 du 3,4
vay a^4-1 luôn chia het cho 5
CM chia hết 7 là xong
Nêu a chia 7 du 1 ,5,6 thay nhu tren vao a^4-1 la xong
Voi a chia 7 du 2,3,4
Neu a chia 7 du 2 thi a^4 chia 7 du 16 ; a^2 chia 7 du 4<=>15a^2 chia 7 du 60
suy ra a^4+15a^2+1 chia 7 du 16+60+1=77 chia het cho 7
Neu a chia 7 du 3, 4 tươ]ng tu
\(=\left(a+a^2\right)+\left(a^3+a^4\right)+\left(a^5+a^6\right)+...+\left(a^{29}+a^{30}\right)=\)
\(=a\left(a+1\right)+a^3\left(a+1\right)+a^5\left(a+1\right)+...+a^{29}\left(a+1\right)=\)
\(=\left(a+1\right)\left(a+a^3+a^5+...+a^{29}\right)⋮\left(a+1\right)\)
Ta có: a không chia hết cho 5
=> a chia 5 dư 1;2;3 hoặc 4
=>a4 chia 5 dư 1 (tính chất)
=>a4-1 chia hết cho 5
Phần sau làm tương tự