Tìm các số tự nhiên n thỏa mãn mỗi bất phương trình sau: 3(5 – 4n) + (27 + 2n) > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3\left(5-4n\right)+\left(27+2n\right)>0\)
\(\Leftrightarrow15-12n+27+2n>0\)
\(\Leftrightarrow42-10n>0\)
\(\Leftrightarrow-10n>-42\Leftrightarrow n< 4,2\)
Vậy \(S=\left\{n|n< 4,2\right\}\)
b) \(\left(n+2\right)^2-\left(n-3\right)\left(n+3\right)\le40\)
\(\Leftrightarrow n^2+4n+4-n^2+9\le40\)
\(\Leftrightarrow4n+13\le40\)
\(\Leftrightarrow4n\le27\Leftrightarrow n\le6,75\)
Vậy \(S=\left\{n|n\le6,75\right\}\)
Ta có: n + 2 2 – (n – 3)(n + 3) ≤ 40
⇔ n 2 + 4n + 4 – n 2 + 9 ≤ 40
⇔ 4n < 40 – 13
⇔ n < 27/4
Vậy các số tự nhiên cần tìm là 0; 1; 2; 3; 4; 5; 6.
`2 ( n - 2 ) - 5 ( n + 1 ) > 0`
`<=> 2x - 4 - 5n - 5 > 0`
`<=> -3n > 9`
`<=> n < 3`
Mà `n in NN`
`=> n = { 0 ; 1 ; 2 }`
Vậy `n = { 0 ; 1 ; 2 }`
2(n−2)−5(n+1)>0
=>2x−4−5n−5>0
=>−3n>9
=>n<3
Mà n∈N
⇒n={0;1;2}
KL:...
`2(n-1)-5(n-2)>0`
`<=>2n-2-5n+10>0`
`<=>8-3n>0`
`<=>3n<8`
`<=>n<8/3`
Mà `n in NN`
`=>n in {0,1,2}`
\(2\left(n-1\right)-5\left(n-2\right)>0\)
<=> 2n -2 - 5n + 10 > 0
<=> -3n + 8 > 0
<=> -3n > - 8
<=> \(n< \dfrac{8}{3}\)
Mà n là số tự nhiên
<=> n \(\in\left\{0;1;2\right\}\)
\(4n-2⋮2n+13\)
\(\Rightarrow2\left(2n+13\right)-28⋮2n+13\)
Mà \(2n+13⋮2n+13 \)
\(\Rightarrow2\left(2n+13\right)⋮2n+13\)
\(\Rightarrow28⋮2n+13\)
\(\Rightarrow2n+13\inƯ\left(28\right)=\left\{1;2;4;7;14;28\right\}\)
Vậy ta có bảng sau:
2n+13 | 1 | 2 | 4 | 7 | 14 | 28 |
n | ~ | ~ | ~ | ~ | ~ | ~ |
Đk n thuộc N =>Kết luận | LOẠI | LOẠI | LOẠI | LOẠI | LOẠI | LOẠI |
=> Không có giá trị cho n
4n -2 chia hết cho 2n+13
\(\Rightarrow\)4n+26-24 chia hết cho 2n+13
2.(2n +13) -24 chia
Bài 2:
A = (a+b)(1/a+1/b)
Có: \(a+b\ge2\sqrt{ab}\)
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)
=> \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4\)
=> ĐPCM
1.b)
Pt (1) : 4(n + 1) + 3n - 6 < 19
<=> 4n + 4 + 3n - 6 < 19
<=> 7n - 2 < 19
<=> 7n - 2 - 19 < 0
<=> 7n - 21 < 0
<=> n < 3
Pt (2) : (n - 3)^2 - (n + 4)(n - 4) ≤ 43
<=> n^2 - 6n + 9 - n^2 + 16 ≤ 43
<=> -6n + 25 ≤ 43
<=> -6n ≤ 18
<=> n ≥ -3
Vì n < 3 và n ≥ -3 => -3 ≤ n ≤ 3.
Vậy S = {x ∈ R ; -3 ≤ n ≤ 3}
Câu 5. Tìm các số x thỏa mãn cả hai bất phương trình sau x>3 và x<8
A. x<8
b. 3<x<8
c. 3>x>8
d. x>3
câu 6: tìm các số x thỏa mãn cả 2 bất phương trình sau x>5 và x>3
A. x<5
B. 3<x<5
C. x>3
D. c>5
Ta có: 3(5 – 4n) + (27 + 2n) > 0
⇔ 15 – 12n + 27 + 2n > 0
⇔ -10n + 42 > 0
⇔ -10n > -42
⇔ n < 4,2
Vậy các số tự nhiên cần tìm là 0; 1; 2; 3; 4.