Tổng các nghiệm của phương trình cos2x + 5sinx = 0 trên khoảng (0;10 π ) bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(cosx\ne-\dfrac{\sqrt{3}}{2}\) \(\Rightarrow\left[{}\begin{matrix}x\ne\dfrac{5\pi}{6}+k2\pi\\x\ne\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(pt\Rightarrow3-\left(1-2sin^2x\right)+2sinx.cosx-5sinx-cosx=0\)
\(\Leftrightarrow2sin^2x-5sinx+2+cosx\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sinx-2\right)+cosx\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sinx+cosx-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\sinx+cosx=2\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
Loại nghiệm
\(\Rightarrow x=\dfrac{\pi}{6}+k2\pi\)
\(0\le\dfrac{\pi}{6}+k2\pi\le2022\pi\Rightarrow0\le k\le1010\)
\(\Rightarrow\sum x=1011.\dfrac{\pi}{6}+2\pi\left(0+1+2+...+1010\right)=\dfrac{1011\pi}{6}+2\pi.\dfrac{1010.1011}{2}=...\)
Đáp án A
P T ⇔ 1 − 2 sin 2 x − 5 sin x − 3 ⇔ 2 sin 2 x + 5 sin x + 2 = 0 ⇔ sin x = − 1 2 sin x = − 2
⇒ sin x = − 1 2 ⇔ x = − π 6 + k 2 π x = 7 π 6 + k 2 π k ∈ ℤ
Đáp án B
Ta có: P T ⇔ 4 c os 3 x − 3 cos x + 2 sin 2 x + 9 sin x − 5 = 0
⇔ cos x 4 c os 2 x − 3 + 2 sin 2 x + 9 sin x − 5 = 0 ⇔ cos x 1 − 4 sin 2 x + 2 sin x − 1 s inx + 5 = 0 ⇔ 2 sin x − 1 cos x + 2 sin x cos x + s inx + 5 = 0 ⇔ 2 sin x − 1 s inx + cos x + sin 2 x + 5 = 0 ⇔ 2 sin x − 1 = 0 ⇔ s inx = 1 2 ⇔ x = π 6 k 2 π x = 5 π 6 + k 2 π
Với x ∈ 0 ; 3 π ⇒ x = π 6 ; 5 π 6 ; π 6 + 2 π ; 5 π 6 + 2 π ⇒ T = 6 π .
Chọn D
ta có cos2x - √3sin2x= 1
⇔ 1 2 cos 2x - 3 2 . sin 2 x = 1 2 ⇔ sin π 6 . c os2x - cos π 6 . sin2x = 1 2 ⇔ sin π 6 − 2 x = sin π 6 ⇔ π 6 − 2 x = π 6 + k 2 π π 6 − 2 x = π − π 6 + k 2 π ⇔ x = − k π x = − π 3 − k π ⇔ x = l π x = − π 3 + l π ( l = − k ∈ Z )
Suy ra phương trình chỉ có một nghiệm thuộc(0;π) là x = 2 π 3
Đáp án B