Cho hàm số y=f(x) có bảng biến thiên như sau
Số giá trị nguyên dương của tham số m để bất phương trình log 2 f ( x ) + e f ( x ) + 1 f 9 x ) ≥ m có nghiệm trên khoảng (-2;1) là:
A. 68
B. 18
C. 229
D. 230
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp giải:
Phương trình có nhiều nhất n nghiệm thì xảy ra các trường hợp có n nghiệm, có n – 1 nghiệm, … , vô nghiệm, dựa vào bảng biến thiên để biện luận số giao điểm của hai đồ thị hàm số
Lời giải:
Từ bảng biến thiên ta dựng bảng biên thiên của y = f x như sau:
Quan sát bảng biến thiên của hàm số y = f x ta thấy
đường thẳng y = m cắt đồ thị hàm số y = tại 6 điểm phân biệt ⇔ 2 < m < 5 .
Do m ∈ ℤ nên m ∈ {3; 4} hay có 2 giá trị của m thỏa mãn
Chọn A.
Đáp án C
Phương pháp:
Số nghiệm của phương trình f(x) = m bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m
Cách giải:
Số nghiệm của phương trình f(x) = m(*) bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m
⇒ Để (*) có 3 nghiệm thực phân biệt thì m ∈ (-1;3)
Đáp án D
⇒ log 2 f ( x ) + e f ( x ) + 1 f ( x ) < log 2 4 + e 4 + 1 . 4