K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2018

Đáp án D

Phương pháp:

Đánh giá số nghiệm của phương trình f(x) = m + 1 bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m + 1

Cách giải:

Số  nghiệm của phương trình f(x) = m + 1 bằng số giao điểm của đồ thị hàm số y = f(x)

và đường thẳng y = m + 1

Để f(x) = m + 1 có 3 nghiệm thực phân biệt thì 2 < m+1 < 4 ó3 < m < 3

19 tháng 8 2018

Đáp án là A

12 tháng 9 2018

Từ bảng biến thiên ta dễ có 1 <m <2 

Chọn đáp án C.

13 tháng 7 2018

Đáp án D

Hàm số f(x) có dạng f ( x ) = ( x + 2 ) ( x - 1 ) 2 Giao với trục Oy tại (0, 2) .

=> 2<m<4.

Chọn phương án D.

24 tháng 10 2018

Đáp án B

Phương trình f(x) = f(m) có ba nghiệm phân biệt  ⇔ - 2 < f ( m ) < 2 ⇒ - 1 < m < 3 m ≠ 0 ; 2

14 tháng 7 2019

Đáp án là C

11 tháng 11 2017

29 tháng 8 2018

Đáp án A

Để phương trình f(x)=m có 3 nghiệm phân biệt thì đường thẳng y=m cắt đồ thị hàm số tại 3 điểm phân biệt.

Dựa vào bảng biến thiên ta thấy -2<m<1

14 tháng 1 2018

Chọn D.

Để phương trình f(x)=m+2 có 4 nghiệm phân biệt thì đường thẳng y=m+2 phải cắt đồ thị hàm số y=f(x) tại 4 điểm phân biệt.

Dựa vào đồ thị ta được -4<m+2<-3 => -6<m<-5