K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

Đáp án A

Phương pháp giải:

Phương trình có nhiều nhất n nghiệm thì xảy ra các trường hợp có n nghiệm, có n – 1 nghiệm, … , vô nghiệm, dựa vào bảng biến thiên để biện luận số giao điểm của hai đồ thị hàm số

Lời giải: 

19 tháng 8 2018

Đáp án là A

31 tháng 5 2018

12 tháng 9 2018

Từ bảng biến thiên ta dễ có 1 <m <2 

Chọn đáp án C.

27 tháng 1 2018

Đáp án A

1 tháng 6 2018

Đáp án A

3 tháng 6 2018

Chọn đáp án C

Phương pháp

Số nghiệm của phương trình f(x)=m là số giao điểm của đồ thị hàm số y=f(x) và y=m song song với trục hoành.

Cách giải

Ta có: 

Số nghiệm của phương trình f(x)=m là số giao điểm của đồ thị hàm số y=f(x) và y=m+1 song song với trục hoành.

Từ BBT ta thấy để phương trình f(x)-1=m có đúng 2 nghiệm thì

6 tháng 9 2019

Đáp án A.

Ta có  f x − m = 0 ⇔ f x = m   . Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y = f x  và đường thẳng  y = m .Do đó để phương trình đã cho có nghiệm duy nhất thì đường thẳng y = m  phải cắt đồ thị hàm số y = f x  tại một điểm duy nhất. Khi đó m ∈ 3 ; + ∞ .

17 tháng 4 2018

Đáp án D

Phương pháp:

Đánh giá số nghiệm của phương trình f(x) = m + 1 bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m + 1

Cách giải:

Số  nghiệm của phương trình f(x) = m + 1 bằng số giao điểm của đồ thị hàm số y = f(x)

và đường thẳng y = m + 1

Để f(x) = m + 1 có 3 nghiệm thực phân biệt thì 2 < m+1 < 4 ó3 < m < 3

7 tháng 6 2018