Tính thể tích V của khối cầu tiếp xúc với tất cả các cạnh của hình lập phương cạnh 2 2
A. V = 32 π 3
B. V = 32 π 6
C. V = 256 π 6
D. V = 64 π 2 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương pháp:
Thể tích khối cầu có bán kính R là V = 4 3 πR 3
Cách giải:
Bán kính của khối cầu tiếp xúc với tất cả các cạnh của hình lập phương cạnh 2 2 chính là nửa độ dài đường chéo các mặt của hình lập phương và bằng:
Đáp án A
Phương pháp: Xác định tâm mặt cầu ngoại tiếp khối chóp tam giác đều.
B1: Xác định hai trục của hai mặt phẳng bất kì (đường thẳng đi qua tâm đường tròn ngoại tiếp đáy và vuông góc với đáy).
B2: Xác định giao điểm I của hai trục đó. Khi đó I là tâm mặt cầu cần tìm.
Cách giải: Gọi O và O’ lần lượt là tâm tam giác đều ABC và ACD thì D O ⊥ A B C ; B O ' ⊥ A C D
Gọi I = D O ∩ B O ' , ta dễ dạng chứng minh được I là tâm mặt cầu tiếp xúc với các cạnh của tứ diện đều.
Và R = IF là bán kính mặt cầu đó.
Kẻ BB’ qua I và song song với BD.
Gọi O là tâm đáy \(\Rightarrow AO=\dfrac{a\sqrt{3}}{3}\)
\(SA=\dfrac{AO}{cos60^0}=\dfrac{2a\sqrt{3}}{3}\)
\(SO=\sqrt{SA^2-AO^2}=a\)
\(\Rightarrow R=\dfrac{SA^2}{2SO}=\dfrac{2a}{3}\)
\(V=\dfrac{4}{3}\pi R^3=\dfrac{32\pi a^3}{81}\)
\(\Rightarrow\dfrac{V}{\pi a^3}=\dfrac{32}{81}\)
Đáp án C
Khối cầu tiếp xúc với 12 cạnh của hình lập phương có tâm là giao điểmcủa các đường chéo của hình lập phương và bán kính R = a 2 2
Vậy thể tích của khối cầu là V = 4 3 π R 3 = 4 3 π a 2 2 3 = π 2 a 3 3
Chọn A