Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp: Xác định tâm mặt cầu ngoại tiếp khối chóp tam giác đều.
B1: Xác định hai trục của hai mặt phẳng bất kì (đường thẳng đi qua tâm đường tròn ngoại tiếp đáy và vuông góc với đáy).
B2: Xác định giao điểm I của hai trục đó. Khi đó I là tâm mặt cầu cần tìm.
Cách giải: Gọi O và O’ lần lượt là tâm tam giác đều ABC và ACD thì D O ⊥ A B C ; B O ' ⊥ A C D
Gọi I = D O ∩ B O ' , ta dễ dạng chứng minh được I là tâm mặt cầu tiếp xúc với các cạnh của tứ diện đều.
Và R = IF là bán kính mặt cầu đó.
Kẻ BB’ qua I và song song với BD.
Đáp án D
Diện tích tam giác bằng 2 sin x 2 3 4 = 3 sin x .
Suy ra thể tích cần tích bằng V = ∫ 0 π 3 sin x d x = - 3 cos x 0 π = 2 3 .
Giải phương trình:
Phương trình (1) có tối đa 1 nghiệm. Mà f π = 0 ⇒ x = π là nghiệm duy nhất của (1).
Thể tích khối tròn xoay tạo thành là:
Mà
Chọn A.
Đáp án B
Phương pháp giải:
Dựa vào đồ thị hàm số xác định hoành độ điểm D suy ra tung độ điểm A chính là độ dài BC
Lời giải: Gọi với
Gọi thuộc đồ thị
Vì ABCDlà hình chữ nhật
Khi đó BC = m. Mà
Chọn A