K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2018

Để phân thức có nghĩa:

x 2 + 5 x + 4 ≠ 0

⇔ (x + 4)(x + 1) ≠ 0

⇔ x ≠ -4, x ≠ -1

Vậy điều kiện để phân thức xác định là x ≠ -4 và x ≠ -1

18 tháng 4 2017

14 tháng 9 2019

\(\dfrac{x}{4+2a}\) có nghĩa khi \(a\ne-2\)

\(\dfrac{y}{4-2a}\)có nghĩa khi \(a\ne2\)

\(\dfrac{z}{4-a^2}\)có nghĩa khi \(a\ne\pm2\)

MTC: \(2\left(2+a\right)\left(2-a\right)\)

11 tháng 11 2021

Bài 1: 

c: ĐKXĐ: \(x\notin\left\{-1;3\right\}\)

23 tháng 4 2017

a. Biểu thức đã cho có nghĩa khi \(\sqrt{x^2-4}\)\(\sqrt{x-2}\) đồng thời có nghĩa

* \(\sqrt{x^2-4}=\sqrt{\left(x-2\right)\left(x+2\right)}\) có nghĩa khi x \(x\le-2\) hoặc \(x \ge2\)

* \(\sqrt{x-2}\) có nghĩa khi \(x\ge2\)

Vậy điều kiện để biểu thức đã cho có nghĩa là \(x\ge2\)

Với điều kiện trên ta có:

\(\sqrt{x^2-4}+2\sqrt{x-2}=\sqrt{\left(x-2\right)\left(x+2\right)}+2\sqrt{x-2}=\sqrt{x-2}\left(\sqrt{x+2}+2\right)\)

a) ĐK: \(x-5\ne0\Leftrightarrow x\ne5\)

b)

ĐK:  \(\left(\dfrac{1}{2}x+4\right)\ne0\Leftrightarrow\dfrac{1}{2}x\ne-4\\ \Leftrightarrow x\ne-8\)

c)ĐK:

 \(-2x-10\ne0\\ \Leftrightarrow-2x\ne10\\ \Leftrightarrow x\ne-5\)

a) ĐKXĐ: \(x\ne5\)

b) ĐKXĐ: \(x\ne-8\)

c) ĐKXĐ: \(x\ne-5\)

26 tháng 10 2023

`sqrt(x-5)` có nghĩa khi:

`x-5 ≥0`

`=> x ≥5`

Vậy `x≥5` thì `sqrt(x-5` có nghĩa

____________

`1/(sqrt(3x-2))` có nghĩa khi

`1/(sqrt(3x-2)) ≥0`

`⇒ 3x-2≥0`

` ⇒3x≥2`

` ⇒x≥2/3`

Vậy `x ≥2/3` thì `1/(sqrt(3x-2))` có nghĩa

27 tháng 10 2023

Nếu x = 2/3 thì mẫu bằng 0 vậy biểu thức vẫn không có nghĩa thế bài làm vậy là đúng à

14 tháng 7 2021

Để \(\sqrt{x^2+3}\) có nghĩa thì \(x^2+3\ge0\) (luôn đúng)

Để \(\sqrt{\left(x-1\right)\left(x+2\right)}\) có nghĩa thì \(\left(x-1\right)\left(x+2\right)\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\ge0\\x+2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\le0\\x+2\le0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le-2\end{matrix}\right.\)

a) ĐKXĐ: \(x\in R\)

b) ĐKXĐ: \(\left[{}\begin{matrix}x\le-2\\x\ge1\end{matrix}\right.\)