K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2019

a ) 1 2.3 + 1 3.4 + ... + 1 6.7 = 1 2 − 1 7 < 1 2 .

b ) 4 1.5 + 4 5.9 + 4 9.13 + 4 13.17 + 4 17.21 = 1 − 1 21 < 1. c ) T a   c ó     1 2 2   < 1 1.2 ; 1 3 2 < 1 2.3 ; 1 4 2 < 1 3.4 ; ... ; 1 10 2 < 1 9.10 . D o   đ ó , 1 2 2   + 1 3 2 + 1 4 2 + 1 10 2 < 1 1.2 + 1 2.3 + 1 3.4 + ... + 1 9.10 < 1.

9 tháng 4 2020

a) Ta có:

      1/( 2.3 ) = ( 3 - 2 )/( 2.3 )

                     = 3/( 2.3 ) - 2/( 2.3 )

                     = 1/2 - 1/3.

     1/( 3.4 ) = ( 4 - 3 )/( 3.4 )

                     = 4/( 3.4 ) - 3/( 3.4 )

                     = 1/3 - 1/4.

b) 

Ta có:

A = 1/( 5.6 ) + 1/( 6.7 ) + 1/( 7.8 ) + ..... + 1/( 2019.2020 )

A = 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + ..... + 1/2019 - 1/2020

A = 1/5 - 1/2020

A = 403/2020

Vậy A = 403/2020.

9 tháng 4 2020

a) Ta có: \(\frac{1}{2.3}=\frac{3-2}{2.3}=\frac{3}{2.3}-\frac{2}{2.3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{3.4}=\frac{4-3}{3.4}=\frac{4}{3.4}-\frac{3}{3.4}=\frac{1}{3}-\frac{1}{4}\)

b) Ta có: \(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+.......+\frac{1}{2019.2020}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+........+\frac{1}{2019}-\frac{1}{2020}\)

\(=\frac{1}{5}-\frac{1}{2020}=\frac{403}{2020}\)

22 tháng 5 2017

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}\)

22 tháng 5 2017

Đây là tính chứ chứng minh cái gì ? 

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}\)

Ta có:

\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}=1-\dfrac{1}{10}=\dfrac{9}{10}\)

17 tháng 4 2017

cảm ơn bạn nhiều

30 tháng 4 2015

Ta có : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

Vì \(\frac{49}{50}

25 tháng 3 2015

Gọi \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

          \(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

           \(A=1-\frac{1}{100}\)(TỐI GIẢN CÁC PHÂN SỐ LẬP LẠI )

           \(A=\frac{99}{100}

10 tháng 1 2022

Ta có \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
        \(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}\)
        = \(\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+\frac{4}{3.4}-\frac{3}{3.4}+...+\frac{100}{99.100}-\frac{99}{99.100}\)
        =\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
        =   \(1-\frac{1}{100}\)
        =     \(\frac{99}{100}\)
Vậy\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}< 1\)

vi /chia au cong thi cha be hon a

11 tháng 4 2018

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)

Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)< 1

~~~

#Sunrise

23 tháng 4 2017

a) 1/1.2 + 1/2.3 + 1/3.4 + ....... + 1/99.100

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ..... + 1/99 - 1/100

= 1 - 1/100

= 99/100 < 1 nên 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/99.100 < 1 (ĐPCM)

23 tháng 4 2017

a)1-1/2+1/2-1/3+1/3-1/4+......+1/99-1/100

1-1/100=99/100<1

cho mk nha ^^