Cho tam giác đều ABC có cạnh bằng a. Tính tích vô hướng A B → . A C → .
A. A B → . A C → = 2 a 2 .
B. A B → . A C → = − a 2 3 2 .
C. A B → . A C → = − a 2 2 .
D. A B → . A C → = a 2 2 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\overrightarrow{BA}\cdot\overrightarrow{BC}=BA\cdot BC\cdot cos60=\dfrac{1}{2}a^2\)
b: \(\overrightarrow{HB}\cdot\overrightarrow{BA}=\overrightarrow{HB}\left(\overrightarrow{HA}-\overrightarrow{HB}\right)=\overrightarrow{HB}\cdot\overrightarrow{HA}-HB^2=-HB^2=-\dfrac{1}{4}a^2\)
Lời giải:
$\overrightarrow{AB}\parallel \overrightarrow{C'D'}$ và $|\overrightarrow{AB}|=|\overrightarrow{C'D'}|=a$ nên:
$\overrightarrow{AB}.\overrightarrow{C'D'}=a^2$
+) Ta có: \(AB \bot AC \Rightarrow \overrightarrow {AB} \bot \overrightarrow {AC} \Rightarrow \overrightarrow {AB} .\overrightarrow {AC} = 0\)
+) \(\overrightarrow {AC} .\overrightarrow {BC} = \left| {\overrightarrow {AC} } \right|.\left| {\overline {BC} } \right|.\cos \left( {\overrightarrow {AC} ,\overrightarrow {BC} } \right)\)
Ta có: \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt 2 \Leftrightarrow \sqrt {2A{C^2}} = \sqrt 2 \)\( \Rightarrow AC = 1\)
\( \Rightarrow \overrightarrow {AC} .\overrightarrow {BC} = 1.\sqrt 2 .\cos \left( {45^\circ } \right) = 1\)
+) \(\overrightarrow {BA} .\overrightarrow {BC} = \left| {\overrightarrow {BA} } \right|.\left| {\overrightarrow {BC} } \right|.\cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = 1.\sqrt 2 .\cos \left( {45^\circ } \right) = 1\)
Ta có: góc A B → , A C → là góc A ^ nên A B → , A C → = 60 0 .
Do đó A B → . A C → = A B . A C . c o s A B → , A C → = a . a . c o s 60 0 = a 2 2 .
Chọn D.