x-3xy+2=2 Tìm x;y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x\left(3x^2y-2xy^2+1\right)-3xy\left(5x^2-3xy\right)+x^2y^2-10=0\)
\(\Leftrightarrow15x^3y-10x^2y^2+5x-15x^3y+9x^2y^2+x^2y^2-10=0\)
\(\Leftrightarrow5x=10\Leftrightarrow x=2\)
x^2 + 3xy + 2y^2 = 0
=> x^2 + xy + 2xy + 2y^2 = 0
=> x(x+y) + 2y ( x+ y ) = 0 =
=> ( x+ 2y)( x + y ) = 0
=> x = -2y hoặc x = -y
(+) x = -2y thay vào ta có :
8y^2 + 6y + 5 = 0 giải ra y => x
(+) thay x = -y ta có :
2y^2 - 3y + 5 = 0 tương tự
a/ \(x^2-3xy+2y^2=0\Leftrightarrow(x^2-2xy)-(xy-2y^2)=0.\) \(\Leftrightarrow x\left(x-2y\right)-y\left(x-2y\right)=0\Leftrightarrow\left(x-2y\right)\left(x-y\right)=0.\) \(\Leftrightarrow\orbr{\begin{cases}x=y\\x=2y\end{cases},với..x,y\in R.}\)
- Với x = y thay vào phương trình 2x2 - 3xy + 9 = 0 thì được phương trình : 2x2 - 3x2 + 9 = 0 Tức là x2 = 9 Vậy x = y =3 và x = y = - 3.
- Với x = 2y Thay vào phương trình 2x2 - 3xy + 9 = 0 được 8y2 - 6y2 + 9 = 0 Tức là 2y2 + 9 = 0 Phương trình vô nghiệm.
Trả lời x= y = 3 và x = y = - 3 .
\(x^2+2y^2+3xy=5\)
=>\(x^2+xy+2xy+2y^2=5\)
=>\(x\left(x+y\right)+2y\left(x+y\right)=5\)
=>\(\left(x+y\right)\left(x+2y\right)=5\)
=>\(\left(x+y\right)\left(x+2y\right)=1\cdot5=5\cdot1=\left(-1\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-1\right)\)
TH1: \(\left\{{}\begin{matrix}x+y=1\\x+2y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y-x-2y=1-5=-4\\x+y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-y=-4\\x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=1-y=1-4=-3\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+y=5\\x+2y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y-x-2y=5-1\\x+y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-y=4\\x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-4\\x=5-y=5-\left(-4\right)=9\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}x+y=-1\\x+2y=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y-x-2y=-1-\left(-5\right)\\x+2y=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-y=-1+5=4\\x+2y=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-4\\x=-5-2y=-5-2\cdot\left(-4\right)=-5+8=3\end{matrix}\right.\)
TH4: \(\left\{{}\begin{matrix}x+y=-5\\x+2y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y-x-2y=-5-\left(-1\right)\\x+y=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-y=-5+1=-4\\x+y=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=4\\x=-5-y=-5-4=-9\end{matrix}\right.\)
3xy+2y=2-x
=>3xy+2y+x=2
=>\(y\left(3x+2\right)+x+\dfrac{2}{3}=2+\dfrac{2}{3}=\dfrac{8}{3}\)
=>\(3y\left(x+\dfrac{2}{3}\right)+\left(x+\dfrac{2}{3}\right)=\dfrac{8}{3}\)
=>\(\left(x+\dfrac{2}{3}\right)\left(3y+1\right)=\dfrac{8}{3}\)
=>\(\left(3x+2\right)\left(3y+1\right)=8\)
=>\(\left(3x+2;3y+1\right)\in\left\{\left(1;8\right);\left(8;1\right);\left(-1;-8\right);\left(-8;-1\right);\left(2;4\right);\left(4;2\right);\left(-2;-4\right);\left(-4;-2\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(-\dfrac{1}{3};\dfrac{7}{3}\right);\left(2;0\right);\left(-1;-3\right);\left(-\dfrac{10}{3};-\dfrac{2}{3}\right);\left(0;1\right);\left(\dfrac{2}{3};\dfrac{1}{3}\right);\left(-\dfrac{4}{3};-\dfrac{5}{3}\right);\left(-2;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;0\right);\left(-1;-3\right);\left(0;1\right);\left(-2;-1\right)\right\}\)
x-3xy+2=2
x-3xy=2-2
x-3xy=0
vẬy là 0
x;y=...;...
1;2;3;4;5;...