K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2015

x^2 + 3xy + 2y^2 =  0 

=> x^2 + xy + 2xy + 2y^2 = 0 

=> x(x+y) + 2y ( x+  y ) = 0 =

=> ( x+  2y)( x + y ) = 0 

=> x = -2y hoặc x = -y 

(+) x = -2y thay vào ta có :

 8y^2 + 6y + 5 = 0 giải ra y => x 

(+) thay x = -y ta có :

2y^2 - 3y + 5 = 0 tương tự 

30 tháng 8 2015

Nguyễn Đình Dũng tục tỉu thế

11 tháng 1 2021

21 tháng 8 2015

Theo giả thiết \(x+y\le3\to xy+\left(y+4\right)\le y\left(3-y\right)+y+4=-\left(y-2\right)^2+8\le8.\)

Do đó theo bất đẳng thức Cauchy-Schwartz \(\frac{1}{xy}+\frac{9}{y+4}\ge\frac{\left(1+3\right)^2}{xy+y+4}\ge\frac{16}{8}=2.\)

Nhân cả hai vế với \(\frac{2}{3}\)  ta suy ra \(\frac{2}{3xy}+\frac{6}{y+4}\ge\frac{4}{3}.\)  Dấu bằng xảy ra khi \(y=2,x=1.\) Vậy giá trị bé nhất của \(P\)  là \(\frac{4}{3}\).

27 tháng 8 2021

Ta có: \(2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x^2+2xy+y^2\right)=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\)

Theo BĐT Bunhacopxky: \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\Rightarrow\dfrac{3}{2}\left(x^2+y^2\right)\ge\dfrac{3}{4}\left(x+y\right)^2\\ \Rightarrow2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{5}{4}\left(x+y\right)^2\\ \Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)

Chứng minh tương tự:

\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\\ \sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)

Cộng vế theo vế, ta được: \(P\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\cdot1=\sqrt{5}\)

Dấu "=" \(\Leftrightarrow x=y=z=\dfrac{1}{3}\) 

 

27 tháng 8 2021

Bạn tham khảo nhé

https://hoc24.vn/cau-hoi/cho-cac-so-duong-xyz-thoa-man-xyz1cmrcan2x2xy2y2can2y2yz2z2can2z2zx2x2can5.182722154737

19 tháng 7 2015

TA có 

x^2 +y^2 = 2x^2y^2 (1)

x  + y + 1 = 3xy => x+y = 3xy - 1 

=> ( x + y)^2 = (3xy - 1)^2 => x^2 + 2xy+ y^2 = 9x^2y^2 - 6xy + 1

=> x^2 + y^2 = 9x^2y^2 - 8xy + 1 (2)

Lấy (2) - (1) => 7x^2y^2 -8xy + 1 = 0 

Đặt xy = t = > x^2 y^ 2 = t^2 thay vào pt ta có 

7t^2 - 8t + 1 = 0 => 7t^2 - 7t - t + 1 = 0 => 7t(t-1) - (t - 1 ) = 0 => (7t - 1)(t - 1) = 0 

=> t = 1 hoặc t = 1/7 

(+) t = 1 => xy = 1 => x^2.y^2 =  1 

=> x^2 + y^2 = 2.1 = 2 

=> (x + y)^2 = x^2 + y^2 + 2xy = 2 + 2.1 = 2+ 2 = 4 

=> x + y = căn 4 = 2 (*)

   ( x - y)^2 = x^2 + y^2 - 2xy = 2 - 2.1 = 0 

=> x - y = 0 (**)

Từ (*) và (**) => 2x = 2 => x = 1 => x = y  = 1 

(+) t = 1/7 tương tự