K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2017

5x + 16 =0

⇔ 5x = -16

⇔ Cách giải phương trình bậc nhất một ẩn cực hay, có đáp án | Toán lớp 8.

Vậy phương trình có nghiệm Cách giải phương trình bậc nhất một ẩn cực hay, có đáp án | Toán lớp 8.

17 tháng 1 2019

Đặt m = 2 x 2  +x -2

Ta có: 2 x 2 + x - 2 2 +10 x 2  +5x -16 =0

⇔  2 x 2 + x - 2 2 +5(2 x 2  +x -2) -6 =0

⇔  m 2  +5m -6 =0

Phương trình  m 2  +5m -6 = 0 có hệ số a = 1, b = 5, c = -6 nên có dạng

a + b + c = 0

Suy ra :  m 1  =1 , m 2  =-6

m1 =1 ta có: 2 x 2  +x -2 =1 ⇔ 2 x 2  +x -3=0

Phương trình 2 x 2  +x -3 = 0 có hệ số a = 2, b = 1 , c = -3 nên có dạng

a +b+c=0

Suy ra:  x 1  =1 , x 2  =-3/2

Với m=-6 ta có: 2 x 2  +x -2 = -6 ⇔ 2 x 2  +x +4 =0

 =  1 2  -4.2.4 = 1 -32 = -31 < 0 . Phương trình vô nghiệm

Vậy phương trình đã cho có 2 nghiệm :  x 1  =1 , x 2  =-32

27 tháng 11 2017

Ta có: | - 5x | - 16 = 3x

+ Với x ≥ 0, phương trình tương đương: 5x - 16 = 3x ⇔ 2x = 16 ⇔ x = 8

Thỏa mãn điều kiện x ≥ 0

+ Với x < 0, phương trình tương đương: - 5x - 16 = 3x ⇔ 8x = - 16 ⇔ x = - 2

Thỏa mãn điều kiện x < 0

Vậy phương trình đã cho có tập nghiệm là S = { - 2;8 }

26 tháng 12 2018

Ta có: | - 5x | - 16 = 3x

+ Với x ≥ 0, phương trình tương đương: 5x - 16 = 3x ⇔ 2x = 16 ⇔ x = 8

Thỏa mãn điều kiện x ≥ 0

+ Với x < 0, phương trình tương đương: - 5x - 16 = 3x ⇔ 8x = - 16 ⇔ x = - 2

Thỏa mãn điều kiện x < 0

Vậy phương trình đã cho có tập nghiệm là S = { - 2;8 }

30 tháng 3 2017

cho mk một tk đi bà con ơi

ủng hộ mk đi làm ơn

30 tháng 3 2017

Dùng \(\Delta\)ra ngay nha bạn.

19 tháng 4 2019

a) Phương trình bậc hai

2 x 2   –   7 x   +   3   =   0

Có: a = 2; b = -7; c = 3;

Δ   =   b 2   –   4 a c   =   ( - 7 ) 2   –   4 . 2 . 3   =   25   >   0

Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt là:

Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có hai nghiệm là 3 và Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) Phương trình bậc hai  6 x 2   +   x   +   5   =   0

Có a = 6; b = 1; c = 5; 

Δ   =   b 2   –   4 a c   =   12   –   4 . 5 . 6   =   - 119   <   0

Vậy phương trình vô nghiệm.

c) Phương trình bậc hai  6 x 2   +   x   –   5   =   0

Có a = 6; b = 1; c = -5;

Δ   =   b 2   –   4 a c   =   12   –   4 . 6 . ( - 5 )   =   121   >   0

Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt là:

Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có hai nghiệm là -1 và Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

d) Phương trình bậc hai  3 x 2   +   5 x   +   2   =   0

Có a = 3; b = 5; c = 2;

Δ   =   b 2   –   4 a c   =   5 2   –   4 . 3 . 2   =   1   >   0

Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt là:

Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có hai nghiệm là -1 và Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

e) Phương trình bậc hai  y 2   –   8 y   +   16   =   0

Có a = 1; b = -8; c = 16;  Δ   =   b 2   –   4 a c   =   ( - 8 ) 2   –   4 . 1 . 16   =   0 .

Áp dụng công thức nghiệm ta có phương trình có nghiệm kép :

Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có nghiệm kép y = 4.

f) Phương trình bậc hai  16 z 2   +   24 z   +   9   =   0

Có a = 16; b = 24; c = 9;  Δ   =   b 2   –   4 a c   =   24 2   –   4 . 16 . 9   =   0

Áp dụng công thức nghiệm ta có phương trình có nghiệm kép:

Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có nghiệm kép Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

Phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức Δ = b2 – 4ac.

+ Nếu Δ > 0, phương trình có hai nghiệm phân biệt Giải bài 15 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Nếu Δ = 0, phương trình có nghiệm kép Giải bài 15 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9 ;

+ Nếu Δ < 0, phương trình vô nghiệm.

13 tháng 3 2018

b) x 4 - 5 x 2  + 4 = 0

Đặt t = x 2  ≥ 0 , ta có phương trình:

t 2  - 5t + 4 = 0 (dạng a + b + c = 1 -5 + 4 = 0)

t 1 = 1 (nhận) ; t 2 = 4 (nhận)

với t = 1 ⇔ x 2  = 1 ⇔ x = ± 1

với t = 4 ⇔  x 2  = 4 ⇔ x = ± 2

Vậy nghiệm của phương trình x = ±1; x = ± 2

23 tháng 5 2018

5x – 2 = 0 ⇔ 5x = 2 ⇔ x = 2/5

25 tháng 1 2018

a, pt <=> (x^3+x^2)-(4x^2-4) = 0

<=> (x+1).(x^2-4x+4) = 0

<=> (x+1).(x-2)^2 = 0

<=> x+1=0 hoặc x-2=0

<=> x=-1 hoặc x=2

b, pt <=> (x^4-x^3)+(2x^3-2x^2)-(2x^2-2x)+(3x-3) = 0

<=> (x-1).(x^3+2x^2-2x+3) = 0

<=> (x-1).[(x^3+3x^2)-(x^2+3x)+(3x+3)] = 0

<=> (x-1).(x+3).(x^2-3x+3) = 0

<=> x-1=0 hoặc x+3=0 ( vì x^2-3x+3 > 0 )

<=> x=1 hoặc x=-3

c, pt <=> (4^x-10.2^x+25)-9 =0

<=> (2^x-5)^2-9 = 0

<=> (2^x-5-3).(2^x-5+3) = 0

<=> (2^x-8).(2^x-2) = 0

<=> 2^x-8=0 hoặc 2^x-2=0

<=> x=3 hoặc x=1

Tk mk nha

25 tháng 1 2018

a)   \(x^3-3x^2+4=0\)

\(\Leftrightarrow\)\(x^3+x^2-4x^2+4=0\)

\(\Leftrightarrow\)\(x^2\left(x+1\right)-4\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

Vậy....