K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2017

Ta có: | - 5x | - 16 = 3x

+ Với x ≥ 0, phương trình tương đương: 5x - 16 = 3x ⇔ 2x = 16 ⇔ x = 8

Thỏa mãn điều kiện x ≥ 0

+ Với x < 0, phương trình tương đương: - 5x - 16 = 3x ⇔ 8x = - 16 ⇔ x = - 2

Thỏa mãn điều kiện x < 0

Vậy phương trình đã cho có tập nghiệm là S = { - 2;8 }

26 tháng 12 2018

Ta có: | - 5x | - 16 = 3x

+ Với x ≥ 0, phương trình tương đương: 5x - 16 = 3x ⇔ 2x = 16 ⇔ x = 8

Thỏa mãn điều kiện x ≥ 0

+ Với x < 0, phương trình tương đương: - 5x - 16 = 3x ⇔ 8x = - 16 ⇔ x = - 2

Thỏa mãn điều kiện x < 0

Vậy phương trình đã cho có tập nghiệm là S = { - 2;8 }

10 tháng 7 2019

a) x = 10,75               b) x = 0

3 tháng 1 2019

a) x = 4                 b) x = 3

c) x = 14               d) x = 1.

18 tháng 4 2019

\(|-5x|=3x-16\)

\(TH1:-5x=3x-16\Leftrightarrow-8x=-16\Leftrightarrow x=2\)

\(TH2:-5x=-3x+16\Leftrightarrow-2x=16\Leftrightarrow x=-8\)

3 tháng 5 2017

a) (*) ⇔ (5x – 3)2 – (4x – 7)2 = 0

⇔ (5x – 3 + 4x – 7)(5x – 3 – 4x + 7) = 0

⇔ (9x – 10)(x + 4) = 0 ⇔ 9x – 10 = 0 hoặc x + 4 = 0

⇔ x = 10/9 hoặc x = -4

Tập nghiệm : S = { 10/9 ; -4}

b) ĐKXĐ: (x + 4)(x – 4) ≠ 0 ⇔ x + 4 ≠ 0 và x – 4 ≠ 0 ⇔ x ≠ ⇔ 4

Ta có: x2 – 16 = (x + 4)(x – 4) ≠ 0

Quy đồng và khử mẫu, ta được:

96 + 6(x2 – 16) = (2x – 1)(x – 4) + (3x – 1)(x + 4)

⇔ 96 + 6x2 – 96 = 2x2 – 8x – x + 4 + 3x2 + 12x – x – 4

⇔ x2 – 2x = 0 ⇔ x(x – 2) = 0

⇔ x = 0 hoặc x – 2 = 0

⇔ x = 0 hoặc x = 2 (thỏa mãn ĐKXĐ)

Tập nghiệm: S = {0;2}

c) ĐKXĐ: x ≠ 0; x – 1 ≠ 0 và x – 2 ≠ 0 ⇔ x ≠ 0; x ≠ 1 và x ≠ 2

MTC: 4x(x – 2)(x – 1)

Quy đồng và khử mẫu, ta được:

2(1 – x)(x – 1) – x(x – 2) = 2(x – 1)2 – 2(x – 1)(x – 2)

⇔ -2x2 + 4x – 2 – x2 + 2x = 2x2 – 4x + 2 – 2x2 + 6x – 4

⇔ 3x2 – 4x = 0 ⇔ x(3x – 4) = 0 ⇔ x = 0 hoặc x = 4/3

(x = 0 không thỏa mãn ĐKXĐ)

 

Tập nghiệm: S = {4/3}

8 tháng 9 2019

|-5x| - 16 = 3x (4)

Ta có: |-5x| = -5x khi -5x ≥ 0 hay x ≤ 0.

|-5x| = -(-5x) = 5x khi -5x < 0 hay x > 0.

Vậy phương trình (4) tương đương với:

+ -5x – 16 = 3x với điều kiện x ≤ 0.

-5x – 16 = 3x ⇔ -5x – 3x = 16 ⇔ -8x = 16 ⇔ x = -2.

Giá trị x = -2 thỏa mãn điều kiện x ≤ 0 nên là nghiệm của (4).

+ 5x – 16 = 3x với điều kiện x > 0.

5x – 16 = 3x ⇔ 5x – 3x = 16 ⇔ 2x = 16 ⇔ x = 8

Giá trị x = 8 thỏa mãn điều kiện x > 0 nên là nghiệm của (4).

Vậy phương trình (4) có nghiệm x = -2 và x = 8.

17 tháng 8 2017

5x + 16 =0

⇔ 5x = -16

⇔ Cách giải phương trình bậc nhất một ẩn cực hay, có đáp án | Toán lớp 8.

Vậy phương trình có nghiệm Cách giải phương trình bậc nhất một ẩn cực hay, có đáp án | Toán lớp 8.

12 tháng 2 2018

(2 – 3x)(x + 11) = (3x – 2)(2 – 5x)

⇔ (2 – 3x)(x + 11) – (3x – 2)(2 – 5x) = 0

⇔ (2 – 3x)(x + 11) + (2 – 3x)(2 – 5x) = 0

⇔ (2 – 3x)[(x + 11) + (2 – 5x)] = 0

⇔ (2 – 3x)(x + 11 + 2 – 5x) = 0

⇔ (2 – 3x)(13 – 4x) = 0 ⇔ 2 – 3x = 0 hoặc 13 – 4x = 0

       2 – 3x = 0 ⇔ x = 2/3

      13 – 4x = 0 ⇔ x = 13/4

Vậy phương trình có nghiệm x = 2/3 hoặc x = 13/4

1: Ta có: \(\dfrac{3}{x-3}+\dfrac{4}{x+3}=\dfrac{3x-7}{x^2-9}\)

\(\Leftrightarrow\dfrac{3x+9}{\left(x-3\right)\left(x+3\right)}+\dfrac{4x-12}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x-7}{\left(x-3\right)\left(x+3\right)}\)

Suy ra: \(3x+9+4x-12=3x-7\)

\(\Leftrightarrow4x=-7+12-9=-4\)

hay \(x=-1\left(nhận\right)\)

2: Ta có: \(\dfrac{3}{x-4}-\dfrac{4}{x+4}=\dfrac{3x-4}{x^2-16}\)

\(\Leftrightarrow\dfrac{3x+12}{\left(x-4\right)\left(x+4\right)}-\dfrac{4x-16}{\left(x+4\right)\left(x-4\right)}=\dfrac{3x-4}{\left(x-4\right)\left(x+4\right)}\)

Suy ra: \(3x+12-4x+16=3x-4\)

\(\Leftrightarrow28-4x=-4\)

\(\Leftrightarrow4x=32\)

hay \(x=8\left(tm\right)\)

3: Ta có: \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)

Suy ra: \(5x^2-12+3x+3=5x^2-5x\)

\(\Leftrightarrow3x-9+5x=0\)

\(\Leftrightarrow8x=9\)

hay \(x=\dfrac{9}{8}\left(nhận\right)\)