Tính giá trị của biểu thức P = x 2 + y 2 - x y + 1 biết rằng 4 x 2 + 1 x 2 - 1 = log 2 14 - y - 2 y + 1 với x ≠ 0 ; - 1 ≤ y ≤ 13 2 .
A. P = 4
B. P = 2
C. P = 1
D. P = 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bunhiacopski ta có:
\(\sqrt{x^2+\frac{1}{x^2}}=\frac{1}{\sqrt{17}}\sqrt{\left(x^2+\frac{1}{x^2}\right)\left(4^2+1^2\right)}\ge\frac{1}{\sqrt{17}}\left(4x+\frac{1}{x}\right)\)
Tương tự:
\(\sqrt{y^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{17}}\left(4y+\frac{1}{y}\right)\)
Cộng lại ta được:
\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{17}}\left(4x+4y+\frac{1}{x}+\frac{1}{y}\right)\)
\(\ge\frac{1}{\sqrt{17}}\left[4\left(x+y\right)+\frac{4}{x+y}\right]=\frac{1}{\sqrt{17}}\left(16+1\right)=\sqrt{17}\)
Dấu "=" xảy ra tại x=y=2
a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)
b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)
Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)
c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)
Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)
bbgfhfygfdsdty64562gdfhgvfhgfhhhhh
\hvhhhggybhbghhguyg
a: \(A=\dfrac{2}{xy}:\left(\dfrac{y-x}{xy}\right)^2-\left(\dfrac{x^2+y^2}{\left(x-y\right)^2}\right)\)
\(=\dfrac{2}{xy}\cdot\dfrac{\left(xy\right)^2}{\left(x-y\right)^2}-\dfrac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\dfrac{2xy-x^2-y^2}{\left(x-y\right)^2}=-1\)
2:
\(P=\dfrac{\left(5x+3\right)^2}{3x-2}\cdot\dfrac{\left(3x-2\right)\left(3x+2\right)}{5x+3}=\left(5x+3\right)\left(3x+2\right)\)
Đáp án B
Ta có x 2 + 1 x 2 - 1 ≥ 2 x 2 . 1 x 2 - 1 = 1 ⇒ 4 x 2 + 1 x 2 - 1 ≥ 4 14 - y - 2 y + 1 ≤ 16 ⇒ log 2 14 - y - 2 y + 1 ≤ 4
Theo giả thiết 4 x 2 + 1 x 2 - 1 = log 2 14 - y - 2 y + 1 ⇒ x 2 = 1 x 2 y = 0 ⇔ x 2 = 1 y = 0
Vậy giá trị biểu thức P = x 2 + y 2 - x y + 1 = 2 .