Tìm m để hệ sau có nghiệm duy nhất m x ≤ m - 3 ( m + 3 ) x ≥ m - 9
A. m= 1
B. m = -2
C. m= 2
D. m= -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x-y=1\\3x+2y=m\end{cases}\Leftrightarrow}\hept{\begin{cases}2x-2y=2\\3x+2y=m\end{cases}}\) \(\Rightarrow5x=m+2\Rightarrow x=\frac{m+2}{5}\)
thay \(y=x-1=\frac{m+2}{5}-1=\frac{m-3}{5}\)
Vì \(\frac{x}{y}=\frac{3}{4}\Rightarrow x=\frac{3y}{4}\Rightarrow\frac{m+2}{5}=3\left(\frac{m-3}{20}\right)\Leftrightarrow m=-17\)
Vậy m = -17
b) (1-1/m)2 + (1/m)2 =5 => t2 -2t +1 +t2 =5 => t2 -t -2 =0 => t = -1 ; t =2
+ t =-1 => m =-1
+ t =2 => m =1/2
1) khi \(m\ne0;1\) thì hệ pt có nghiệm duy nhất: \(x=\frac{m-1}{m}\) và \(y=\frac{1}{m}\)
ta có : \(x=1-\frac{1}{m}\Leftrightarrow x=1-y\Leftrightarrow y=-x+1\)
vậy điểm M luôn luôn thuộc dt có hệ pt: \(y=-x+1\) (dpcm)
Chọn A
TH1. Nếu m+ 3< 0 hay m< - 3.Khi đó :
Hệ bất phương trình có nghiệm duy nhất
TH2. Nếu m+3= 0 hay m= -3
Khi đó :
Hay x ≥ -2. Khi đó hệ bpt có vô số nghiệm (loại)
TH3. Nếu m+ 3> 0 hay m> - 3
+ Nếu -3< m< 0
Khi đó :
Hệ này có vô số nghiệm ( loại )
+ Nếu m= 0
Hệ bất phương trình vô nghiệm( loại)
+ Nếu m> 0
Khi đó :
Hệ bất phương trình có nghiệm duy nhất
Vậy m= 1 thỏa yêu cầu bài toán.