Tìm nghiệm pt
\(\left(x-5\right)^8+\left(x-6\right)^{10}=1\)
Giải chi tiết nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $\frac{x-1}{x+2y}=a; \frac{y+1}{x-2y}=b$ thì HPT trở thành:
\(\left\{\begin{matrix}
5a+3b=8\\
20a-7b=-6\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
20a+12b=32\\
20a-7b=-6\end{matrix}\right.\)
\(\Rightarrow 19b=38\Rightarrow b=2\Rightarrow a=0,4\)
Ta có:
\(\left\{\begin{matrix} a=\frac{2}{5}\\ b=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{x-1}{x+2y}=\frac{2}{5}\\ \frac{y+1}{x-2y}=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3x=4y+5\\ 2x=1+5y\end{matrix}\right.\)
\(\Rightarrow 2(4y+5)-3(1+5y)=0\Rightarrow y=1\)
Kéo theo $x=3$
Vậy $(x,y)=(3,1)$
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x.\left(2x+1\right)}=\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{2x.\left(2x+1\right)}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2x.\left(2x+1\right)}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2x}-\dfrac{1}{2x+1}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2x+1}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2x+1}=\dfrac{9}{20}\)
\(\Leftrightarrow2x+1=\dfrac{20}{9}\Leftrightarrow x=\dfrac{11}{18}\)
Em giải như XYZ olm em nhé
Sau đó em thêm vào lập luận sau:
\(x\) = \(\dfrac{11}{18}\)
Vì \(\in\) N*
Vậy \(x\in\) \(\varnothing\)
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\\\dfrac{\dfrac{2}{3}}{x}+\dfrac{\dfrac{2}{3}}{y}+\dfrac{\dfrac{8}{9}}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\\\dfrac{\dfrac{2}{3}}{x}+\dfrac{\dfrac{14}{9}}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\left(1\right)\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\left(2\right)\end{matrix}\right.\)
Nhân cả hai vế (1) cho \(\dfrac{2}{3}\) ta có: \(\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{2}{3y}=\dfrac{5.2}{6.3}\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{2}{3y}=\dfrac{10}{18}\left(3\right)\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\left(4\right)\end{matrix}\right.\)
Lấy (4) trừ (3) ta có:
\(\dfrac{14}{9y}-\dfrac{2}{3y}=1-\dfrac{10}{18}\)\(\Leftrightarrow\dfrac{8}{9y}=\dfrac{4}{9}\)\(\Leftrightarrow y=2\Rightarrow x=\dfrac{1}{\dfrac{5}{6}-\dfrac{1}{2}}=3\)
BPT đã cho vô nghiệm khi và chỉ khi BPT \(f\left(x\right)\le0\) nghiệm đúng với mọi x
TH1: \(\left\{{}\begin{matrix}2m^2+m-6=0\\2m-3=0\end{matrix}\right.\) \(\Rightarrow m=\dfrac{3}{2}\)
TH2: \(\left\{{}\begin{matrix}2m^2+m-6< 0\\\Delta=\left(2m-3\right)^2+4\left(2m^2+m-6\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m^2+m-6< 0\\12m^2-8m-15\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3< m< \dfrac{3}{2}\\-\dfrac{5}{6}\le m\le\dfrac{3}{2}\end{matrix}\right.\) \(\Rightarrow-\dfrac{5}{6}\le m< \dfrac{3}{2}\)
Kết hợp 2 trường hợp ta được \(-\dfrac{5}{6}\le m\le\dfrac{3}{2}\)
Để olm.vn giúp em nhá:
(\(x-5\))2002 + (2\(x\) + 1)2000 = 0
vì (\(x\) - )2022 ≥ 0 ∀ \(x\)
(2\(x\) + 1)2000 \(\ge\) 0 ∀ \(x\)
⇒ (\(x\) - 5)2002 + (2\(x\) + 1)2000 = 0
⇔ \(\left\{{}\begin{matrix}\left(x-5\right)^{2002}=0\\\left(2x+1\right)^{2000}=0\end{matrix}\right.\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}x-5=0\\2x+1=0\end{matrix}\right.\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}x=5\\2x=-1\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=5\\x=-\dfrac{1}{2}\end{matrix}\right.\)
vì - \(\dfrac{1}{2}\) \(\ne\) 5 vậy \(x\in\) \(\varnothing\)
a) ∆' = [-(m - 3)]² - (m² + 3)
= m² - 6m + 9 - m² - 3
= -6m + 6
Để phương trình đã cho có 2 nghiệm thì ∆' ≥ 0
⇔ -6m + 6 ≥ 0
⇔ 6m ≤ 6
⇔ m ≤ 1
Vậy m ≤ 1 thì phương trình đã cho luôn có 2 nghiệm
b) Theo định lý Viét, ta có:
x₁ + x₂ = 2(m - 3) = 2m - 6
x₁x₂ = m² + 3
Ta có:
(x₁ - x₂)² - 5x₁x₂ = 4
⇔ x₁² - 2x₁x₂ + x₂² - 5x₁x₂ = 4
⇔ x₁² + 2x₁x₂ + x₂² - 2x₁x₂ - 2x₁x₂ - 5x₁x₂ = 4
⇔ (x₁ + x₂)² - 9x₁x₂ = 4
⇔ (2m - 6)² - 9(m² + 3) = 4
⇔ 4m² - 24m + 36 - 9m² - 27 = 4
⇔ -5m² - 24m + 9 = 4
⇔ 5m² + 24m - 5 = 0
⇔ 5m² + 25m - m - 5 = 0
⇔ (5m² + 25m) - (m + 5) = 0
⇔ 5m(m + 5) - (m + 5) = 0
⇔ (m + 5)(5m - 1) = 0
⇔ m + 5 = 0 hoặc 5m - 1 = 0
*) m + 5 = 0
⇔ m = -5 (nhận)
*) 5m - 1 = 0
⇔ m = 1/5 (nhận)
Vậy m = -5; m = 1/5 thì phương trình đã cho có 2 nghiệm thỏa mãn yêu cầu
a: \(\Delta=\left[-2\left(m-3\right)\right]^2-4\cdot1\cdot\left(m^2+3\right)\)
\(=\left(2m-6\right)^2-4\left(m^2+3\right)\)
\(=4m^2-24m+36-4m^2-12=-24m+24\)
Để phương trình có hai nghiệm thì \(\Delta>=0\)
=>-24m+24>=0
=>-24m>=-24
=>m<=1
b: Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left[-2\left(m-3\right)\right]}{1}=2\left(m-3\right)\\x_1\cdot x_2=\dfrac{c}{a}=m^2+3\end{matrix}\right.\)
\(\left(x_1-x_2\right)^2-5x_1x_2=4\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2-5x_2x_1=4\)
=>\(\left(x_1+x_2\right)^2-9x_1x_2=4\)
=>\(\left(2m-6\right)^2-9\left(m^2+3\right)=4\)
=>\(4m^2-24m+36-9m^2-27-4=0\)
=>\(-5m^2-24m+5=0\)
=>\(-5m^2-25m+m+5=0\)
=>\(-5m\left(m+5\right)+\left(m+5\right)=0\)
=>(m+5)(-5m+1)=0
=>\(\left[{}\begin{matrix}m+5=0\\-5m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-5\left(nhận\right)\\m=\dfrac{1}{5}\left(nhận\right)\end{matrix}\right.\)
Có: \(\left\{{}\begin{matrix}\left|x-3\right|\ge0\forall x\\\left|y-1\right|\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left|x-3\right|+\left|y-1\right|\ge0\forall x;y\)
Mà: \(\left|x-3\right|+\left|y-1\right|=0\)
nên: \(\left\{{}\begin{matrix}x-3=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Vì số thừa số của các số hạng đều là chẵn nên mỗi số hạng đều là nguyên dương
Vì 1 = 0 + 1 nên ( x - 5 ) 8 phải là 0
=> ( x - 5 ) 8 = 0
=> x - 5 = 0
=> x = 5
Tương tự có thể tìm ra x = 6 nữa