CMR phân số sau là tối giản với mọi n là số tự nhiên:
8n+5/6n+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN của (36n+4,8n+1)
Khi đó :36n+4 chia hết cho d
8n + 1 chia hết cho d
Xét hiệu 2.(36n + 4) - 9.(8n + 1) chia hết cho d
= 72n+ 8 - 72 n - 9 chia hết cho d
= 8 - 9 chia hết cho d
= -1 chia hết cho d
=> đcpcm
gọi d là ước chung của(36n+4; 8n+1)
36n+4 chia hết cho d suy ra 2(36n+4)chia hết cho d
8n+1 chia hết cho d suy ra 9(8n+1)chia hết cho d
⇔(72n+8)- (72n+9)⋮d
⇔72n+8-72n+9⋮d
⇔8-9⋮d
⇔d=1
Vậy đcpcm
Gọi d là ƯCLN của (8n+5,6n+4)
Khi đó :8n+5 chia hết cho d
6n+4 chia hết cho d
Xét hiệu :4(6n+4)-3.(8n+5) chia hết cho d
=24n+16-24n+15 chia hết cho d
=16-15 chia hết cho d
=1 chia hết cho d =>d=1 hoặc -1(dpcm)
Xong
để cm 8n+5/6n+4 là PSTG thì phải cm 8n+5 và 6n+4 là hai số nguyên tố cùng nhau
Đặt ƯCLN(8n+5,6n+4)=d (d thuộc N;d>1)
8n+5:d => 3.(8n+5):d=>24n+15:d
6n+4 :d => 4.(6n+4):d=>24n+16:d
ta có (24n+16-24n+15):d
1:d=>d=1
vậy 8n+5/6n+4 là PSTG
\(\frac{6n+5}{8n+7}\)là phân số tối giản khi và chi r khi
6n + 5 và 8n + 7 nguyên tố cùng nhau
gọi ước chung lớn nhất của 6n + 5 và 8n + 7 là d
ta có 6n + 5 chia hết cho d
=> 4( 6n+ 5) chia hết cho d
hay 24n + 20 chia hết cho d
ta cũng có 8n+ 7 chia hết cho d
nên 3( 8n+7) chia hết cho d
hay 24n + 21 chia hết cho d
nên ( 24n+21) - ( 24n + 20) chia hết cho d
=> 24n + 21 - 24n -20 chia hết cho d
=> 1 chia hết cho d
=> d= 1
vậy 6n+ 5 và 8n +7 có ước chung lớn nhất là 1
hay 6n+ 5 và 8n +7 nguyên tố cùng nhau
vậy \(\frac{6n+5}{8n+7}\) là phân số tối giản với mọi số nguyên n
Mình đang cần gấp! Các bạn giúp mình với! ai nhanh mà đúng mình " " cho nha..................thank you các bạn nhiều!!!!!!!!!!!!!! ^v^
a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d
=> (14n+3) -(21n+4) \(⋮\)d
=> 3(14n+3) -2(21n+4) \(⋮\)d
=> 42n+9 - 42n -8 \(⋮\)d
=> 1\(⋮\)d
=> 21n+4/14n+3 là phân số tối giản
Vậy...
c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d
=> (6n+4) - (21n+3) \(⋮\)d
=> 7(6n+4) - 2(21n+3) \(⋮\)d
=> 42n +28 - 42n -6\(⋮\)d
=> 22 \(⋮\)cho số nguyên tố d
d \(\in\){11;2}
Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11
Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ
Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11
Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được
Gọi \(d=ƯC\left(3n+2;6n+5\right)\) với \(d\ge1;d\in N\)
\(\Rightarrow\left\{{}\begin{matrix}3n+2⋮d\\6n+5⋮d\end{matrix}\right.\)
\(\Rightarrow6n+5-2\left(3n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow3n+2\) và \(6n+5\) nguyên tố cùng nhau
Hay P tối giản
A = \(\dfrac{2n+1}{8n+6}\) (n \(\ne\) - \(\dfrac{3}{4}\))
Gọi ước chung lớn nhất của 2n + 1 và 8n + 6 là d
Ta có : \(\left\{{}\begin{matrix}2n+1⋮d\\8n+6⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}8n+4⋮d\\8n+6⋮d\end{matrix}\right.\)
Trừ vế cho vế ta được: 8n + 6 - 8n - 4 ⋮ d ⇒ 2 \(⋮\) d ⇒ d = { 1; 2}
Nếu d = 2 ta có: 2n + 1 ⋮ 2 ⇒ 1 ⋮ 2 ( vô lý)
Vậy d = 1 nên ước chung lớn nhất của 2n + 1 và 8n + 6 là 1
Hay phân số: \(\dfrac{2n+1}{8n+6}\) là phân số tối giản điều phải chứng minh
Gọi \(d=ƯC\left(6n+7;3n+2\right)\) với \(d\ge1;d\in N\)
\(\Rightarrow\left\{{}\begin{matrix}6n+7⋮d\\3n+2⋮d\end{matrix}\right.\)
\(\Rightarrow6n+7-2\left(3n+2\right)⋮d\)
\(\Rightarrow3⋮d\) \(\Rightarrow\left[{}\begin{matrix}d=1\\d=3\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}6n+7=3\left(2n+2\right)+1⋮̸3\\3n+2⋮̸3\end{matrix}\right.\) \(\Rightarrow d\ne3\)
\(\Rightarrow d=1\Rightarrow6n+7\) và \(3n+2\) nguyên tố cùng nhau
Hay \(\dfrac{6n+7}{3n+2}\) tối giản với mọi n tự nhiên
Gọi d là ƯC(6n+7;3n+2) với d≠0;d ≥1(d∈N)
⇒ 6n+7 ⋮ d
3n+2 ⋮ d
⇒6n+7 - 2(3n+2)⋮ d
⇒3⋮d
d∈(1;3)
Vậy 6n+7/3n+2 là phân số tối giản vì là nguyên tố cùng nha
gợi ý nha;
d thuộc UCLN(8N+5;6N+4)
tính ra thì d=1
phân số này là phân số tối giản