56.56.56.56.56.1/(56^n)=56/n
tìm n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n+3 chia hết cho n
mà 2n chia hết cho n
nên 3 chia hết cho n
=>\(n\in\left\{1;-1;3;-3\right\}\)
Tham khảo:D
Cách 1:
2^m + 2^n = 2^(m + n)
<=> 2^m = 2^(m + n) - 2^n
<=> 2^m = 2^n(2^m - 1)
<=> 2^(m - n) = 2^m - 1 (1)
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2).
Mặt khác, vì vai trò của m và n trong phương trình đã cho là đối xứng nên phương trình đã cho cũng tương đương với 2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4).
(2) và (4) cho ta m = n và phương trình trở thành
2^(m + 1) = 2^(2m)
<=> m + 1 = 2m
<=> m = 1
Vậy phương trình có nghiệm m = n = 1.
Cách 2:
Trước hết, ta chứng minh rằng nếu a >= 2, b >= 2 thì a + b = ab khi và chỉ khi a = b = 2.
Thật vậy, không mất tính tổng quát, ta có thể giả sử a <= b.
Khi đó a + b <= 2b <= ab. Như vậy a + b = ab khi và chỉ khi a + b = 2b và 2b = ab, tức là a = b = 2.
Trở lại phương trình, đặt a = 2^m >= 2, b = 2^n >= 2, ta có a + b = ab nên a = b = 2, tức 2^m = 2^n = 2 hay m = n = 1.
n2+n=56 <=> n(n+1)=56
Ta thấy: n và n+1 là 2 số tự nhiên liên tiếp=> Phân tích 56=7.8
=> n(n+1)=7.8
=> n=7
ĐS: n=7
\(n^2+n=56\Leftrightarrow n^2+n-56=0\)
\(\Leftrightarrow n^2-7n+8n-56=0\)
\(\Leftrightarrow n\left(n-7\right)+8\left(n-7\right)=0\)
\(\Leftrightarrow\left(n+8\right)\left(n-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}n+8=0\\n-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}n=-8\\n=7\end{cases}}}\)(Loại n=-8 vì n là số tự nhiên)
Vậy n=7
n2 + n = 56
=> n2 = 56 - n
Mà 72 = 56 - 7
=> n = 7
Vậy: n = 7
\(\frac{56x56x56x56x56}{56^n}=\frac{1}{56^{n-5}}\)
56.56.56.56.56.1/(56^n)=56/n
56^5 . 56^ -n = 56^1 . 1/n
56^(5-n)=56^1.n^ -1
n^ -1 = 56^(4-n)
mình chỉ giải được đến đây thôi