Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có (am)n = am.am...am (định nghĩa) (có n thừa số am)
= am + m + .... + m (có n hạng tử m)
= am.n (đpcm)
b) Ta có 5333 = 53.111 = (53)111 = 125111
3555 = 35.111 = (35)111 = 243111
Nhận thấy 125 < 243
=> 125111 < 243111
=> 5333 < 3555
b) Ta có 2400 = 24.100 = (24)100 = 16100
4200 = 42.100 = (42)100 = 16100
=> 2400 = 4200 (= 16100)
Xét a>b thì:
\(am>bm\Rightarrow ab+am>ab+bm\)
\(\Rightarrow a\left(b+m\right)>b\left(a+m\right)\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\)
Xét a=b thì \(a+m=b+m\Rightarrow\frac{a}{b}=\frac{a+m}{b+m}\)
Xét a<b thì \(am< bm\Rightarrow ba+am< ba+bm\)
\(\Rightarrow a\left(b+m\right)< b\left(a+m\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\)
@Phan Gia Huy@Từ a> b không thể suy ra am > bm
Vì nếu như m âm thì bất đẳng thức sẽ đổi chiều.Kể cả trường hợp dưới
Mk chỉ góp ý thôi
a) \(M=\left\{20;21;22;23;24;25;26\right\}\)
b) \(N=\left\{1;2;3;4;5;6;7\right\}\)
c) \(P=\left\{47;48\right\}\)
_Chúc bạn học tốt_
\(a/M=\left\{20;21;23;24;25;26\right\}\)
\(b/N=\left\{1;2;3;4;5;6;7\right\}\)
\(c/P=\left\{47;48\right\}\)
\(\frac{1}{m}+\frac{n}{6}=\frac{1}{2}\)
\(\Leftrightarrow\frac{6+mn}{6m}=\frac{1}{2}\)
\(\Rightarrow12+2mn-6m=0\)
\(\Leftrightarrow m\left(n-3\right)=-6\)
Do \(m,n\inℤ\)nên \(m,n-3\)là các ước của \(-6\).
Ta có bảng giá trị:
n-3 | 1 | 2 | 3 | 6 | -1 | -2 | -3 | -6 |
m | -6 | -3 | -2 | -1 | 6 | 3 | 2 | 1 |
n | 4 | 5 | 6 | 9 | 2 | 1 | 0 | -3 |
\(a,n+6⋮n\)
\(\Rightarrow6⋮n\)
\(\Rightarrow n\inƯ\left(6\right)\)
\(\Rightarrow n\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(b,n+9⋮n+1\)
\(\Rightarrow n+1+8⋮n+1\)
\(\Rightarrow8⋮n+1\)
\(\Rightarrow n+1\inƯ\left(8\right)\)
\(\Rightarrow n+1\in\left\{-1;1;-2;2;-4;4;-8;8\right\}\)
\(\Rightarrow n\in\left\{-2;0;-3;1;-5;3;-9;7\right\}\)
\(c,n-5⋮n+1\)
\(\Rightarrow n+1-6⋮n+1\)
\(\Rightarrow6⋮n+1\)
\(\Rightarrow n+1\inƯ\left(6\right)\)
\(\Rightarrow n+1\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(\Rightarrow n\in\left\{-2;0;-3;0;-4;2;-7;5\right\}\)
\(d,2n+7⋮n-2\)
\(\Rightarrow2n-4+11⋮n-2\)
\(\Rightarrow2\left(n-2\right)+11⋮n-2\)
\(\Rightarrow11⋮n-2\)
\(\Rightarrow n-2\inƯ\left(11\right)\)
\(\Rightarrow n-2\in\left\{-1;1;-11;11\right\}\)
\(\Rightarrow n\in\left\{1;3;-9;13\right\}\)
\(a,3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
Có \(8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
\(b,5^{200}=\left(5^2\right)^{100}=25^{100}\)
\(2^{500}=\left(2^5\right)^{100}=32^{100}>25^{100}=5^{200}\)
b , Áp dụng và so sánh :
3^200 và 2^300
3^200 = ( 3^2 )^100 = 9^100
2^300 = ( 2^3 )^100 = 8^100
Vì 9^100 > 8^100 => 3^200 > 2^300
Vậy 3^200 > 2^300
5^200 và 2^500
5^200 = ( 5^2 )^100 = 25^100
2^500 = ( 2^5 )^100 = 32^100
Vì 26^100 < 32^100 => 5^200 < 2^500
Vậy 5^200 < 2^500
a) Để n + 2 ⋮ n thì 2 ⋮ n => n \(\in\)Ư(2) = {1; 2}
Vậy n = {1; 2}
b)Để 3n + 5 ⋮ n thì 5 ⋮ n => n \(\in\)Ư(5) = {1; 5}
Vậy n = {1; 5}
c) Để : 18 - 5n ⋮ n thì 18 ⋮ n => \(\in\)Ư(18) = {1; 2; 3; 6; 9; 18}
Vậy n = {1;2;3;6;9;18}
Đáp án cần chọn là: A