K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

Chọn A.

Phương trình:

10 tháng 2 2019

a) Ta có: a = 2; b = -1; c = -7

Δ = b 2  - 4ac = - 1 2  - 4.2.(-7) = 57 > 0

⇒ Phương trình có 2 nghiệm phân biệt x 1 , x 2

28 tháng 1 2022

1, Với x >=  0 ; x khác 1 

\(P=\dfrac{\sqrt{x}\left(x-1\right)+2\sqrt{x}\left(\sqrt{x}-1\right)-\left(3x+1\right)\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}+2x-3\sqrt{x}-3x\sqrt{x}-3x-\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{-2x\sqrt{x}-x-4\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)

 

28 tháng 1 2022

mình sửa đề câu 2 nhé 

a, \(x^2+mx-1=0\)

\(\Delta=m^2-4\left(-1\right)=m^2+4>0\)

Vậy pt luôn có 2 nghiệm pb 

b, Theo Vi et : \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-1\end{matrix}\right.\)

Ta có : \(\left(x_1+x_2\right)^2-2x_1x_2=7\)

Thay vào ta được : \(m^2+2=7\Leftrightarrow m^2=5\Leftrightarrow m=\pm\sqrt{5}\)

 

29 tháng 1 2017

Chọn A.

Ta có 

Phương trình đã cho thành 

đây là phương trình đẳng cấp, ta có thể chia cả hai vế cho b > 0 như sau:

+) TH1.

+) TH2.

 

Do đó 

26 tháng 12 2018

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:

a) Khi $m=1$ thì pt trở thành:

$x^2-2x-5=0$

$\Leftrightarrow (x-1)^2=6$

$\Rightarrow x=1\pm \sqrt{6}$ 

b) Để $x_1=3$ là nghiệm của pt thì:

$3^2-2.m.3+2m-7=0\Leftrightarrow m=\frac{1}{2}$

Nghiệm còn lại $x_2=(x_1+x_2)-x_1=2m-x_1=2.\frac{1}{2}-3=-2$

c) 

$\Delta'= m^2-(2m-7)=(m-1)^2+6>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt $x_1,x_2$

Theo định lý Viet: $x_1+x_2=2m$ và $x_1x_2=2m-7$

Khi đó: 

Để $x_1^2+x_2^2=13$

$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=13$

$\Leftrightarrow (2m)^2-2(2m-7)=13$

$\Leftrightarrow 4m^2-4m+1=0\Leftrightarrow (2m-1)^2=0\Leftrightarrow m=\frac{1}{2}$

d) 

$x_1^2+x_2^2+x_1x_2=(x_1+x_2)^2-x_1x_2$

$=(2m)^2-(2m-7)=4m^2-2m+7=(2m-\frac{1}{2})^2+\frac{27}{4}\geq \frac{27}{4}$
Vậy $x_1^2+x_2^2+x_1x_2$ đạt min bằng $\frac{27}{4}$. Giá trị này đạt tại $m=\frac{1}{4}$

 

NV
22 tháng 1

\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-2\right)=9>0;\forall m\)

Phương trình luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-2\end{matrix}\right.\)

\(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=9\)

\(\Leftrightarrow x_1^2+x_2^2-4x_1x_2=9\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=9\)

\(\Leftrightarrow\left(2m+1\right)^2-6\left(m^2+m-4\right)=9\)

\(\Leftrightarrow2m^2+2m-4=0\)

\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)