Biết n là số tự nhiên thỏa mãn 1 . 2 C n 1 + 2 . 3 C n 2 + . . . + n n + 1 C n n = 180 . 2 n - 2 . Số hạng có hệ số lớn nhất trong khai triển 1 + x n là
A. 925 x 5
B. 924 x 6
C. 923 x 4
D. 926 x 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2=1\)
\(ab+bc+ac=0\) và \(\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2=2\)
\(\)=> a , b , c có 1 số = 1
=> a = 1
Ta có
\(a+b+c=1\)
\(\Rightarrow\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=1\)
Mà \(a^3+b^3+c^3=1\)
\(\Rightarrow3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)
Do a;b ;c bình đẳng nên giả sử a = - b
\(\Rightarrow a+b+c=1\)
\(\Leftrightarrow-b+b+c=1\Leftrightarrow c=1\)
\(A=a^n+b^n+c^n\) Do n là số TN lẻ nên
\(A=a^n+b^n+c^n=\left(-b\right)^n+b^n+c^n=-b^n+b^n+c^n=c^n=1^n=1\)
Câu 2:
Ta có: 3n +8 chia hết cho n + 2 (1)
Mà: n+2 chia hết cho n + 2
=>3(n+2) chia hết cho n + 2
=>3n+6 chia hết cho n + 2 (2)
Từ (1) và (2) =>(3n+8)-(3n+6) chia hết cho n + 2
=>2 chia hết cho n + 2
=>n+2 thuộc Ư(2)
=> n+2thuộc {1;2}⇒n+2∈{1;2}
⇒n∈{0}
Vậy n=0
Tick cho mình đi !
15.B
16.C
17.A
18.D
19.A
còn câu 20,21 mình sợ mình làm sai nên k ghi đáp án sorry bạn nha:(
Đáp án là B