K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

Giải bài 1 trang 57 sgk Đại số 11 | Để học tốt Toán 11

22 tháng 10 2019

Giải bài 1 trang 57 sgk Đại số 11 | Để học tốt Toán 11

14 tháng 7 2019

Giải bài 1 trang 57 sgk Đại số 11 | Để học tốt Toán 11

Giải bài 1 trang 57 sgk Đại số 11 | Để học tốt Toán 11

3 tháng 4 2017

a) Theo dòng 5 của tam giác Pascal, ta có:

(a + 2b)5= a5 + 5a4 (2b) + 10a3(2b)2 + 10a2 (2b)3 + 5a (2b)4 + (2b)5

= a5 + 10a4b + 40a3b2 + 80a2b3 + 80ab4 + 32b5

b) Theo dòng 6 của tam giác Pascal, ta có:

(a - √2)6 = [a + (-√2)]6 = a6 + 6a5 (-√2) + 15a4 (-√2)2 + 20a3 (-√2)3 + 15a2 (-√2)4 + 6a(-√2)5 + (-√2)6.

= a6 - 6√2a5 + 30a4 - 40√2a3 + 60a2 - 24√2a + 8.

c) Theo công thức nhị thức Niu – Tơn, ta có:

(x - )13= [x + (- )]13 = Ck13 . x13 – k . (-)k = Ck13 . (-1)k . x13 – 2k

Nhận xét: Trong trường hợp số mũ n khá nhỏ (chẳng hạn trong các câu a) và b) trên đây) thì ta có thể sử dụng tam giác Pascal để tính nhanh các hệ số của khai triển.

16 tháng 12 2019

(4x+3)^6

\(=C^0_6\cdot\left(4x\right)^6\cdot3^0+C^1_6\cdot\left(4x\right)^5\cdot3+C^2_6\cdot\left(4x\right)^4\cdot3^2+...+C^6_6\cdot\left(4x\right)^0\cdot3^6\)

\(=4096x^6+18432x^5+34560x^4+34560x^3+19440x^2+5832x+729\)

11 tháng 1 2018

a, Số hạng trong khai triển có dạng là :

\(T_{k+1}=C_{10}^k.x^{10-k}.\left(-2\right)^k\)

b, Số hạng chứa \(x^8\) \(\Leftrightarrow x^{10-k}=x^8\)

\(\Leftrightarrow10-k=8\)

\(\Leftrightarrow k=10-8\)

\(\Leftrightarrow k=2\)

Hệ số của số hạng chứa \(x^8\)là :

\(T_3=C_{10}^2.\left(-2\right)^2=180\)

29 tháng 9 2017

4 tháng 12 2018

26 tháng 8 2018