K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(3+2x\right)^9=\sum\limits^n_{k=0}C^k_9.\left(2x\right)^{9-k}.3^k\)

\(\Rightarrow9-k=7\Rightarrow k=2\)

Vậy hệ số \(x^7\)\(C^2_9.2^7.3^2=41472\)

12 tháng 12 2020

15/ Mũ 4=> có 4+1=5 số hạng=> số hạng chính giữa là: \(C^2_4.3^{4-2}.x^2.2^2y^2=58x^2y^2\)

18/ \(x.x^k=x^7\Rightarrow k=6\)

\(C^6_9.3^6.2^3=489888\)

19/ \(C^7_7+C^7_8.\left(-1\right)^7+C^7_9.2^2=...\)

13 tháng 12 2020

C18 , c19 là lm sao vậy ạ ? Mk ko hiểu 2 bài này nơi

NV
12 tháng 12 2020

Câu 8 là \(\left(8a^2-\dfrac{1}{2}b\right)^6\) hay \(\left(8a^2-\dfrac{1}{2b}\right)^6\) bạn? (tốt nhất là bạn dùng tính năng gõ công thức toán để đăng đề, hoặc chụp hình gửi đề trực tiếp lên, hiện nay hoc24 đã cho đăng đề bằng hình ảnh)

9.

\(\left(x+8.x^{-2}\right)^9=\sum\limits^9_{k=0}C_9^kx^{9-k}.8^k.x^{-2k}=\sum\limits^9_{k=0}C_9^k8^kx^{9-3k}\)

Số hạng ko chứa x \(\Rightarrow9-3k=0\Rightarrow k=3\)

Số hạng đó là: \(C_9^3.8^3=...\)

18 tháng 5 2017

Nhị thức Niu-tơn

11 tháng 1 2018

a, Số hạng trong khai triển có dạng là :

\(T_{k+1}=C_{10}^k.x^{10-k}.\left(-2\right)^k\)

b, Số hạng chứa \(x^8\) \(\Leftrightarrow x^{10-k}=x^8\)

\(\Leftrightarrow10-k=8\)

\(\Leftrightarrow k=10-8\)

\(\Leftrightarrow k=2\)

Hệ số của số hạng chứa \(x^8\)là :

\(T_3=C_{10}^2.\left(-2\right)^2=180\)

Chọn A

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Ta có:

\(\begin{array}{l}cos2x = cos\left( {x + \frac{\pi }{3}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}2x = x + \frac{\pi }{3} + k2\pi \\2x =  - x - \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x =  - \frac{\pi }{9} + k\frac{{2\pi }}{3}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

Với \(x = \frac{\pi }{3} + k2\pi \),\(k \in \mathbb{Z}\) đạt giá trị âm lớn nhất khi k = – 1, khi đó \(x = \frac{\pi }{3} - 2\pi  = \frac{{ - 5\pi }}{3}\)

Với \(x =  - \frac{\pi }{9} + k\frac{{2\pi }}{3}\),\(k \in \mathbb{Z}\) đạt giá trị âm lớn nhất khi k = 0, khi đó \(x = x =  - \frac{\pi }{9} + 0.\frac{{2\pi }}{3} =  - \frac{\pi }{9}\)

Vậy nghiệm âm lớn nhất của phương trình đã cho là \( - \frac{\pi }{9}\).
Đáp án: A

8 tháng 1 2017

Ta có: 

Chọn x=1. Ta có tổng hệ số bằng: 

Lại có: 

Số hạng không chứa x suy ra 

Do đó số hạng không chứa x là: 

Chọn D.

9 tháng 8 2017