K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2017

Gọi q là công bội của cấp số nhân đã cho. Theo đề bài, ta có

u 1 + u 5 = 51 u 2 + u 6 = 102 ⇔ u 1 + u 1 . q 4 = 51 u 1 . q + u 1 . q 5 = 102 ⇔ u 1 1 + q 4 = 51      ( 1 ) u 1 q 1 + q 4 = 102       ( 2 )

Lấy (2) chia (1)  ta được

q = 2 ⇒ u 1 = 3 ⇒ u n = 3.2 n − 1

Mặt khác  u n = 12288 ⇔ 3.2 n − 1 = 12288 ⇔ 2 n − 1 = 2 12 ⇔ n = 13

Chọn đáp án D

23 tháng 2 2016

\(u_2=u_1.q,u_5=u_1.q^4,u_6=u_1.q^5\) nên

\(u_1(1+q^4)=51,u_1q(1+q^4)=102\)

chia 2 vế ta được q=2, suy ra u1=3

30 tháng 7 2020

a. Một ngày có 24×60=1440 phút

Mỗi phút não được cung cấp 750ml

Vậy mỗi ngày não được cung cấp bao nhiêu lít máu:

750x1440=1080000 ml=1080 lít

b.Số mạch máu là:

560x1000/0,28=2000000 mạch máu

c.2000000 mạch máu mỗi phút cung cấp được 750 ml máu:

Vậy 1 mạch máu 1 phút cung cấp 750/2000000=3/8000 ml máu

#maymay#

30 tháng 7 2020

Ngọc Hà ui giồi, cuối cùng cũng có người hiểu ý nghĩa chữ đấy :3

17 tháng 5 2018

Giải:

a) Mỗi ngày não được cung cấp = 24 x 60 x 750 = 1.080.000 (ml) = 1080 (lít)
b) Số mạch máu não = 560.000 : 0,28 = 2000.000 ( mạch máu)
c) Mỗi mạch máu não trong 1 phút được cung cấp = 750 : 2000.000 = 0,000375 (ml)

17 tháng 5 2018

tks bạn

25 tháng 4 2019

em moi hoc lo 8

NV
25 tháng 4 2019

\(\left\{{}\begin{matrix}u_{14}=u_1+13d=18\\u_4=u_1+3d=-12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}d=3\\u_1=-21\end{matrix}\right.\)

Tổng 16 số hạng đầu tiên:

\(S_{16}=\frac{16\left(2u_1+15d\right)}{2}=24\)

Bài 1 :

\(\frac{3n+2}{n+1}=\frac{3\left(x+1\right)-1}{n+1}=\frac{-1}{n+1}\)

=> n + 1 \(\in\)Ư(-1) = {1;-1}

Tự lập bảng xét giá trị bn nhé !

Bài 2 :

\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)

\(\Leftrightarrow\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)

\(\Leftrightarrow\frac{5}{x}=\frac{1+2y}{6}\)

\(\Leftrightarrow30=x\left(1+2y\right)\)

Tự lập bảng nhé ! 

8 tháng 9 2023

Để tìm U1 và q, ta sử dụng hệ phương trình sau:

U1 + U6 = 165U3 + U4 = 60

Đầu tiên, ta sử dụng phương trình thứ hai để tìm U3: U3 = 60 - U4

Sau đó, thay giá trị của U3 vào phương trình thứ nhất: U1 + U6 = 165 U1 + (U3 + 3q) = 165 U1 + (60 - U4 + 3q) = 165 U1 - U4 + 3q = 105 (1)

Tiếp theo, ta sử dụng phương trình thứ nhất để tìm U6: U6 = 165 - U1

Thay giá trị của U6 vào phương trình thứ hai: U3 + U4 = 60 (60 - U4) + U4 = 60 60 = 60 (2)

Từ phương trình (2), ta thấy rằng phương trình không chứa U4, do đó không thể giải ra giá trị của U4. Vì vậy, không thể tìm được giá trị cụ thể của U1 và q chỉ từ hai phương trình đã cho.

Để tìm số hạng đầu và công bội của cấp số nhân, ta sử dụng các phương trình đã cho:

a. U4 - U2 = 72 U5 - U3 = 144

Đầu tiên, ta sử dụng phương trình thứ nhất để tìm U4: U4 = U2 + 72

Sau đó, thay giá trị của U4 vào phương trình thứ hai: U5 - U3 = 144 (U2 + 2q) - U3 = 144 U2 - U3 + 2q = 144 (3)

Từ phương trình (3), ta thấy rằng phương trình không chứa U2, do đó không thể giải ra giá trị của U2 và q chỉ từ hai phương trình đã cho.

b. U1 - U3 + U5 = 65 U1 + U7 = 325

Đầu tiên, ta sử dụng phương trình thứ hai để tìm U7: U7 = 325 - U1

Sau đó, thay giá trị của U7 vào phương trình thứ nhất: U1 - U3 + U5 = 65 U1 - U3 + (U1 + 6q) = 65 2U1 - U3 + 6q = 65 (4)

Từ phương trình (4), ta thấy rằng phương trình không chứa U3, do đó không thể giải ra giá trị của U1 và q chỉ từ hai phương trình đã cho.

c. U3 + U5 = 90 U2 - U6 = 240

Đầu tiên, ta sử dụng phương trình thứ hai để tìm U6: U6 = U2 - 240

Sau đó, thay giá trị của U6 vào phương trình thứ nhất: U3 + U5 = 90 U3 + (U2 - 240 + 4q) = 90 U3 + U2 - 240 + 4q = 90 U3 + U2 + 4q = 330 (5)

Từ phương trình (5), ta thấy rằng phương trình không chứa U2, do đó không thể giải ra giá trị của U2 và q chỉ từ hai phương trình đã cho.

d. U1 + U2 + U3 = 14 U1 * U2 * U3 = 64

Đầu tiên, ta sử dụng phương trình thứ nhất để tìm U3: U3 = 14 - U1 - U2

Sau đó, thay giá trị của U3 vào phương trình thứ hai: U1 * U2 * (14 - U1 - U2) = 64

Phương trình này có dạng bậc ba và không thể giải ra giá trị cụ thể của U1 và U2 chỉ từ hai phương trình đã cho.

Tóm lại, không thể tìm được giá trị cụ thể của số hạng đầu và công bội của cấp số nhân chỉ từ các phương trình đã cho.