32 . tính
S = 1 + 1/ 3+ 1/9 +1/ 21+1/81
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: A=1/3+1/9+...+1/3^10
=>3A=1+1/3+...+1/3^9
=>A*2=1-1/3^10=(3^10-1)/3^10
=>A=(3^10-1)/(2*3^10)
c: C=3/2+3/8+3/32+3/128+3/512
=>4C=6+3/2+...+3/128
=>3C=6-3/512
=>C=1023/512
d: A=1/2+...+1/256
=>2A=1+1/2+...+1/128
=>A=1-1/256=255/256
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\)
2 \(\times\) A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\)
2 \(\times\) A - A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) - (\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\))
A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) - \(\dfrac{1}{2}\) - \(\dfrac{1}{4}\) - \(\dfrac{1}{8}\) - \(\dfrac{1}{16}\) - \(\dfrac{1}{32}\)
A = 1 - \(\dfrac{1}{32}\)
A = \(\dfrac{31}{32}\)
a)= ( 81 , 6 x 27 , 3 – 17 , 3 x 81 , 6 ) x 0
=0 ( vì 0 nhân với số nào cũng bằng 0)
b)= ( 13 , 75 – 0 , 48 x 5 ) x ( 42 , 75 : 3 + 2 , 9 ) x ( 9-9)
= ( 13 , 75 – 0 , 48 x 5 ) x ( 42 , 75 : 3 + 2 , 9 ) x 0
= 0 ( vì 0 nhân với số nào cũng bằng 0)
c)=( 792 , 81 x 0 , 25 + 792 , 81 x 0 , 75 ) x 0
=0 ( vì 0 nhân với số nào cũng bằng 0 )
a ) ( 81 , 6 x 27 , 3 – 17 , 3 x 81 , 6 ) x ( 32 x 11 - 3200 x 0 , 1 - 32 )
= ( 81 , 6 x 27 , 3 – 17 , 3 x 81 , 6 ) x ( 352 - 320 - 32 )
= ( 81 , 6 x 27 , 3 – 17 , 3 x 81 , 6 ) x 0
= 0.
b ) ( 13 , 75 – 0 , 48 x 5 ) x ( 42 , 75 : 3 + 2 , 9 ) x ( 1 , 8 x 5 – 0 , 9 x 10 )
= ( 13 , 75 – 0 , 48 x 5 ) x ( 42 , 75 : 3 + 2 , 9 ) x ( 9 - 9 )
= ( 13 , 75 – 0 , 48 x 5 ) x ( 42 , 75 : 3 + 2 , 9 ) x 0
= 0
c ) ( 792 , 81 x 0 , 25 + 792 , 81 x 0 , 75 ) x ( 11 x 9 – 900 x 0 , 1 – 9 )
= ( 792 , 81 x 0 , 25 + 792 , 81 x 0 , 75 ) x ( 99 - 90 - 9 )
= ( 792 , 81 x 0 , 25 + 792 , 81 x 0 , 75 ) x 0
= 0.
Hok tốt !
\(3S=241+81+27+9+...+\dfrac{1}{9}+\dfrac{1}{27}\)
\(2S=3S-S=241-\dfrac{1}{81}=\dfrac{241x81-1}{81}\)
\(\Rightarrow S=\dfrac{241x81-1}{2x81}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}\)
\(A=1-\frac{1}{64}\)
\(A=\frac{63}{64}\)
\(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(3B=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)
\(3B-B=1-\frac{1}{243}\)
\(2B=\frac{242}{243}\)
\(B=\frac{242}{243}\div2\)
\(B=\frac{121}{243}\)
a.A=1/2+1/4+1/8+1/16+1/32+1/64
A= \(\frac{1}{1\cdot2}+\frac{1}{2\cdot2}+\frac{1}{2\cdot4}+\frac{1}{4\cdot4}+\frac{1}{4\cdot8}+\frac{1}{8\cdot8}\)
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{8}\)
= 1 - 1/8 = 7/8
b.B=1/3+1/9+1/27+1/81+1/243
B= \(\frac{1}{1\cdot3}+\frac{1}{3\cdot3}+\frac{1}{3\cdot9}+\frac{1}{9\cdot9}+\frac{1}{9\cdot27}\)
= 1 - 1/27 = 26/27
= 1 x 27/3x27 + 1x9/9x9 + 1x3 / 27 x 3 + 1/81
=27/81 + 9/81 + 3/81 + 1/81
= 40/81
a) A= 1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
A = 1 - 1/2 + 1/2- 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128 + 1/128 - 1/256 - 1/256 - 1/512
A = 1 - 1/512
A = 511/512
b) B = 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
3B = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243
3B - B = 1 - 1/729
2B = 728/729
B = 364/729
a) A= 1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
A = 1 - 1/2 + 1/2- 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128 + 1/128 - 1/256 - 1/256 - 1/512
A = 1 - 1/512
A = 511/512
b) B = 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
3B = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243
3B - B = 1 - 1/729
2B = 728/729
B = 364/729
S = 1/3+1/9+1/27+1/81+1/243+1/729+1/2187 ( 1 )
Nhân S với 3. Ta có:
S x 3 = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729 ( 2 )
Trừ ( 2 ) với ( 1 ) ta có:
S x 3 - S = 1 - 1/ 2187
2S = 2186/ 2187
S = 2186/ 2187 : 2
S = 1093/ 2187
S=1 + 1/ 3+ 1/9 +1/ 21+1/81
S=853/567
HT
TL:
S = 1 + \(\frac{1}{3}+\frac{1}{9}+\frac{1}{21}+\frac{1}{81}\)
S = ( 1 + \(\frac{1}{3}+\frac{1}{9}+\frac{1}{81}\)) + \(\frac{1}{21}\)
S = ( \(\frac{81}{81}\)+ \(\frac{27}{81}\)+\(\frac{9}{81}\)+\(\frac{1}{81}\)) + \(\frac{1}{21}\)
S = \(\frac{118}{81}\)+\(\frac{1}{21}\)
S =\(\frac{853}{567}\)