K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2017

a, HS tự làm

b,i, Áp dụng định lý Pytago tính được BH =  3 cm

Áp dụng hệ thức lược về cạnh góc vuông và đường cao trong tam giác vuông, tính được:

AB = AC =  2 3 cm =>  P A B C = 6 3 cm,  S A B C = 3 3 c m 2

ii, Ta có:  S A B O C = S A B C + S B O C = 4 3 c m 2

a: Xét (O) có

AB,AC là tiếp tuyến

nên AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc BC và H là trung điểm của BC

b: Xét (O) co

ΔBDC nội tiếp

BD là đường kính

=>ΔBCD vuông tại C

=>DC//OA

15 tháng 9 2019

a, A,H,O thẳng hàng vì AH,AO cùng vuông góc với BC

HS tự chứng minh A,B,C,O cùng thuộc đường tròn đường kính OA

b, Ta có  K D C ^ = A O D ^ (cùng phụ với góc  O B C ^ )

=> ∆KDC:∆COA (g.g) => AC.CD = CK.AO

c, Ta có:  M B A ^ = 90 0 - O B M ^ và  M B C ^ = 90 0 - O M B ^

Mà  O M B ^ = O B M ^ (∆OBM cân) =>  M B A ^ = M B C ^

=> MB là phân giác  A B C ^ . Mặt khác AM là phân giác B A C ^

Từ đó suy ra M là tâm đường tròn nội tiếp tam giác ABC

d, Kẻ CD ∩ AC = P. Chứng minh ∆ACP cân tại A

=> CA = AB = AP => A là trung điểm CK

16 tháng 12 2021

undefined

câu c thì cơ bản là tui chứng minh hai tam giác bằng nhau (c-c-c), xong rồi tui suy ra hai góc bằng nhau

a: Xét (O) có

AB,AC là tiếp tuyến

nên AB=AC

=>ΔABC cân tại A

mà OB=OC

nên OA là trung trực của BC

b: ΔOEF cân tại O

mà OG là trung tuyến

nên OG vuông góc với EF

Xét ΔAGO vuông tại G và ΔHDO vuông tại D có

góc AOG chung

Do đó: ΔAGO đồng dạng với ΔHDO

c: ΔAGO đồng dạng vơi ΔHDO

=>OA/OH=OG/OD

=>OA*OD=OH*OG

=>OH*OG=OE^2

=>ΔHEO vuông tại E

=>HE là tiếp tuyên của (O)

a: Xét (O) có 

AB là tiếp tuyến

AC là tiếp tuyến
Do đó AB=AC
hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

22 tháng 12 2023

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AO là đường trung trực của BC

b: AO là đường trung trực của BC

=>AO\(\perp\)BC tại H và H là trung điểm của BC

Xét (O) có

\(\widehat{ABE}\) là góc tạo bởi tiếp tuyến BA và dây cung BE

\(\widehat{EDB}\) là góc nội tiếp chắn cung BE

Do đó: \(\widehat{ABE}=\widehat{EDB}\)

Xét ΔABE và ΔADB có

\(\widehat{ABE}=\widehat{ADB}\)

\(\widehat{BAE}\) chung

Do đó: ΔABE đồng dạng với ΔADB

=>\(\dfrac{AB}{AD}=\dfrac{AE}{AB}\)

=>\(AB^2=AD\cdot AE\)

c: Xét (O) có

MB,ME là các tiếp tuyến

Do đó: MB=ME

Xét (O) có

NE,NC là các tiếp tuyến

Do đó: NE=NC

Chu vi tam giác AMN là:

\(AM+MN+AN\)

\(=AM+ME+EN+AN\)

\(=AM+MB+AN+NC\)

=AB+AC