số tự nhiên lớn nhất có 2 chữ số không chia hết cho 2 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
âu 1:
Gọi số cần tìm là AB (với A và B là các chữ số). Theo đề bài, ta có phương trình:
AB = 2 × A × B
Để giải phương trình này, ta thực hiện các bước sau:
- Ta có A và B đều là các chữ số từ 1 đến 9, do đó AB là một số có hai chữ số từ 10 đến 99.
- Vì AB = 2 × A × B, nên A và B đều khác 0. Do đó, ta có thể giả sử A > B mà không mất tính tổng quát.
- Khi đó, ta có A < 5 (nếu A ≥ 5 thì AB ≥ 50, vượt quá giới hạn của số có hai chữ số).
- Với mỗi giá trị của A từ 1 đến 4, ta tính được giá trị tương ứng của B bằng cách chia AB cho 2A. Nếu B là một số nguyên từ 1 đến 9 thì ta đã tìm được một giá trị của AB.
Kết quả là AB = 16 hoặc AB = 36.
Vậy có hai số thỏa mãn điều kiện đề bài là 16 và 36.
Câu 2:
Số cần tìm có dạng ABC, với A, B, C lần lượt là chữ số hàng trăm, chục và đơn vị. Theo đề bài, ta có hai điều kiện:
- ABC chia hết cho 9.
- A + C chia hết cho 5.
Để tìm số lớn nhất thỏa mãn hai điều kiện này, ta thực hiện các bước sau:
- Vì ABC chia hết cho 9, nên tổng các chữ số của ABC cũng chia hết cho 9. Do đó, ta có A + B + C = 9k (với k là một số nguyên dương).
- Từ điều kiện thứ hai, ta suy ra A + C là một trong các giá trị 5, 10 hoặc 15.
- Nếu A + C = 5 thì B = 4 và C = 1. Như vậy, ta có ABC = 401, không chia hết cho 9.
- Nếu A + C = 10 thì B = 0 và tổng các chữ số của ABC là 10, do đó ABC chia hết cho 9. Ta có ABC = 990.
- Nếu A + C = 15 thì B = 0 và tổng các chữ số của ABC là 18, do đó ABC chia hết cho 9. Ta có ABC = 999.
Vậy số lớn nhất thỏa mãn điều kiện đề bài là 999.
Câu 3:
A. Giả sử hai số tự nhiên a và b có tổng không chia hết cho 2. Khi đó, a và b có cùng hay khác tính chẵn lẻ. Nếu a và b đều là số lẻ thì tổng của chúng là một số chẵn, mâu thuẫn với giả thiết. Do đó, a và b phải cùng tính chẵn. Khi đó, ta có thể viết a = 2m và b = 2n, với m và n là các số tự nhiên. Từ đó, ta có:
ab = 2m × 2n = 2(m + n)
Vì m + n là một số tự nhiên, nên ab chia hết cho 2.
B. Số 2006 không thể là tích của ba số tự nhiên liên tiếp vì ba số tự nhiên liên tiếp phải có dạng (n - 1), n, (n + 1) hoặc n
Số tự nhiên lớn nhất có ba chữ số khác nhau là: 987
Số cây cam và cây quýt trong vườn nhà Hoa là 987 cây.
Số tự nhiên lớn nhất có hai chữ số khác nhau chia hết cho 5 là 95
Số cây cam hơn số cây quýt là : 95
Ta có sơ đồ:
Theo sơ đồ ta có : Số cây cam : ( 987 + 95) : 2 = 541 ( cây)
Số cây quýt : 987 - 541 = 446 ( cây)
Đáp số: ............
Ta có:
\(n^2-n=n\left(n+1\right)\)chia hết cho 5.
n thỏa mãn lớn nhất, có 2 chữ số là 95.
Ta có : \(10\le n\le99\) (1)
Vì \(n^2-n=n\left(n-1\right)\)chia hết cho 5 nên một trong hai số n , n-1 chia hết cho 5
Giả sử số đó là n , ta có n = 5k với k thuộc N.
Từ (1) => \(10\le5k\le99\Leftrightarrow2\le k\le19\)
Vì n là số lớn nhất nên k là số lớn nhất => k = 19
Suy ra được n = 19x5 = 95 là số cần tìm.
Chữ số hàng chục là chữ số lớn nhất chỉ chia hết cho \(1\)và chính nó nên chữ số hàng chục là chữ số \(7\).
Gọi số cần tìm là: \(\overline{a7b}\).
Ta có: \(\overline{b7a}-\overline{a7b}=693\)
\(\Leftrightarrow99\left(b-a\right)=693\)
\(\Leftrightarrow b-a=7\).
Suy ra \(a=1,b=8\)hoặc \(a=2,b=9\).
Vậy có hai số thỏa mãn yêu cầu bài toán là: \(178,279\).
Ta có: 3 = 3; 4 = 22; 5 = 5 và 6 = 2.3
BCNN (3, 4, 5, 6) = 22.3.5 = 60.
Do đó, BC(3; 4; 5; 6) = {0; 60; 120; 180; 240; 300; 360; 420; 480; 540; 600; 660; 720; 780; 840; 900; 960; 1020; ...}
Số lớn nhất có ba chữ số chia hết cho 3, 4, 5, 6 là 960.
1.Có 6 số tự nhieenlaf bội của 25 đồng thời là ước của 300
1.Có 6 STN là bội của 25 đồng thời là ước của 300. 2.Số nguyên tố lớn nhất có dạng *31 là 631 3.33 4.2215 nha (ai thấy đúng thì tích cho mik nha)
số tự nhiên lớn nhất có 2 chữ số không chia hết cho 2 la 99
99 đó bạn
tick nhé