K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2021

\(A=\frac{4\sqrt{x}}{\sqrt{x}+2}=\frac{4\sqrt{x}+8-8}{\sqrt{x}+2}=4-\frac{8}{\sqrt{x}+2}\)(x \(\ge0\))

Nhận thấy \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Rightarrow-\frac{8}{\sqrt{x}+2}\ge-4\)

<=> \(4-\frac{8}{\sqrt{x}+2}\ge0\)

Dấu "=" xảy ra <=> x = 0

Vậy Min A = 0 <=> x = 0 

AH
Akai Haruma
Giáo viên
14 tháng 11 2023

Lời giải:

Ta thấy: $(x-1)^2\geq 0$ với mọi $x$

$(y+2)^2\geq 0$ với mọi $y$

$\Rightarrow A=(x-1)^2+4(y+2)^2+2021\geq 0+4.0+2021=2021$
Vậy $A_{\min}=2021$. Giá trị đạt được khi $x-1=y+2=0$

$\Rightarrow x=1; y=-2$

NM
13 tháng 10 2021

ta có:

undefined

20 tháng 1 2019

Đề thiếu: x  > 1 thì mới tìm được min

\(A=\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\)

Áp dụng bđt Cô-si được

\(A=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\ge2\sqrt{\frac{x-1}{2}.\frac{2}{x-1}}+\frac{1}{2}=2+\frac{1}{2}=\frac{5}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{x-1}{2}=\frac{2}{x-1}\)

                      \(\Leftrightarrow\left(x-1\right)^2=4\)

Mà x > 1 nên x - 1 > 0

          => x - 1 = 2

         => x = 3

Vậy \(A_{min}=\frac{5}{2}\Leftrightarrow x=3\)

13 tháng 9 2021

\(6,\\ a,\\ 1,A=x^2+3x+7=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)

\(2,B=\left(x-2\right)\left(x-5\right)\left(x^2-7x+10\right)=\left(x-2\right)^2\left(x-5\right)^2\ge0\)

Dấu \("="\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)

\(b,\\ 1,A=11-10x-x^2=-\left(x+5\right)^2+36\le36\)

Dấu \("="\Leftrightarrow x=-5\)

 

 

 

18 tháng 9 2021

cảm ơn nha:3

 

16 tháng 4 2020

x^2 > hoặc = -10

min A = -10 <=> ko tìm được x.

24 tháng 6 2018

\(2=x+y\ge2\sqrt{xy}\Rightarrow xy\le1.\)

\(\left(x^4+1\right)\left(y^4+1\right)+2013\ge2x^2.2y^2+2013\ge4+2013=2017\)

Min=2017 

Dấu "=" xảy ra khi x=y=1

12 tháng 5 2017

x^2/1+x^4 bé nhất khi 1 + x^4 bé nhất => x^4-0 => x^4 + 1 = 1=> x=0

Thay x=0 vào x^2/ 1+ x^4 có 0^2/ 1+0^4= 0

Vậy giá trị nhỏ nhất của x^2/ 1+ x^4 là 0 tại x=0