K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2017

a)

Đề kiểm tra Toán 9 | Đề thi Toán 9

14 tháng 3 2022

a. \(A=\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\left(ĐKXĐ:x\ne1;x\ne-3\right)\)

\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{x+3}{x-1}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{\left(x+3\right)^2}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{2-3x+x^2+6x+9-x^2+1}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}.\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{3x+12}=\dfrac{x^2+x+1}{x+3}\)

\(M=A.B=\dfrac{x^2+x+1}{x+3}.\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x-2}{x+3}\)

b. -Để M thuộc Z thì:

\(\left(x^2+x-2\right)⋮\left(x+3\right)\)

\(\Rightarrow\left(x^2+3x-2x-6+4\right)⋮\left(x+3\right)\)

\(\Rightarrow\left[x\left(x+3\right)-2\left(x+3\right)+4\right]⋮\left(x+3\right)\)

\(\Rightarrow4⋮\left(x+3\right)\)

\(\Rightarrow x+3\in\left\{1;2;4;-1;-2;-4\right\}\)

\(\Rightarrow x\in\left\{-2;-1;1;-4;-5;-7\right\}\)

c. \(A^{-1}-B=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{x^3-1}\)

\(=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^2-x+3x-3-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)

\(=\dfrac{1}{x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)

\(Max=\dfrac{4}{3}\Leftrightarrow x=\dfrac{-1}{2}\)

 

9 tháng 5 2021

a, Do \(x=-3\)\(=>A=\frac{x+3}{x+2}=\frac{-3+3}{-3+2}=\frac{0}{-1}=0\)

Vậy A = 0 khi x = -3

b, Ta có : \(B=\frac{x}{x+1}+\frac{2}{x-1}-\frac{4}{x^2-1}=\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{4}{x^2-1}\)

\(=\frac{x^2-x+2x-2}{x^2-1}=\frac{x\left(x-1\right)+2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{\left(x+2\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=\frac{x+2}{x+1}\)(đpcm)

9 tháng 5 2021

iophkhghoghkghjggjhghgjhjnnrjhnjvfdjgjhrthgfjhnvfgughfuihgjfdhntfjhb fdghxdfjthfgdrtfghertgfhgrthgrthgrtrgurgfhgfhgerhgdsuhtyhdfuyhrhgthfutrugerhtgtertmgiurjhtjyiujbgf89yhjrintjihjdhr hbfbv nùgvuibherufdhtguihruvhaweufhvnfgffyhrghsr78ryughg9u8ghtityjyhyijtyjuy8hituhzihuyuyru9jr0ujtyututr09yuitutr9uirt9ui56i789i69utihirrgiu6ygjityojhojkyjyykikgjkthogfjkjhfggfjkhjkhkjkjkjkjgfohfkojhiyy0jhiuihmokhmhjkhkjykkhjkhjykjkgjkyjyotuhjnhknkhijiyjiyitihfgujdhufturgjjhi htfhrhfgrhuygrutrtuyhrthuyhrhtuhutryjuy.ôl

31 tháng 8 2023

a) \(M=\left(\dfrac{3}{\sqrt{x}+3}+\dfrac{x+9}{x-9}\right):\left(\dfrac{2\sqrt{x}-5}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)

\(=\dfrac{3.\left(\sqrt{x}-3\right)+x+9}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-5-\left(\sqrt{x}-3\right)}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}:\dfrac{\sqrt{x}-2}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}.\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}.\left(\sqrt{x}-3\right)}{\sqrt{x}-2}=\dfrac{x}{\sqrt{x}-2}\)

b) \(M< 0\Leftrightarrow\sqrt{x}-2< 0\Leftrightarrow x< 4\)

Kết hợp điều kiện ta được \(0< x< 4\) thì M < 0

c) Từ câu b ta có M < 0 \(\Leftrightarrow0< x< 4\)

nên \(x\inℤ\) để M nguyên âm <=> \(x\in\left\{1;2;3\right\}\)

Thay lần lượt các giá trị vào M được x = 1 thỏa 

d) \(M=\dfrac{x}{\sqrt{x}-2}=\sqrt{x}+2+\dfrac{4}{\sqrt{x}-2}=\left(\sqrt{x}-2+\dfrac{4}{\sqrt{x}-2}\right)+4\)

Vì x > 4 nên \(\sqrt{x}-2>0\)

Áp dụng BĐT Cauchy ta có 

\(M=\left(\sqrt{x}-2+\dfrac{4}{\sqrt{x}-2}\right)+4\ge2\sqrt{\left(\sqrt{x}-2\right).\dfrac{4}{\sqrt{x}-2}}+4=8\)

Dấu "=" xảy ra khi \(\sqrt{x}-2=\dfrac{4}{\sqrt{x}-2}\Leftrightarrow x=16\left(tm\right)\)

31 tháng 8 2023

1) \(M=\left(\dfrac{3}{\sqrt[]{x}+3}+\dfrac{x+9}{x-9}\right):\left(\dfrac{2\sqrt[]{x}-5}{x-3\sqrt[]{x}}-\dfrac{1}{\sqrt[]{x}}\right)\left(x>0;x\ne9\right)\)

\(\Leftrightarrow M=\left(\dfrac{3\left(\sqrt[]{x}-3\right)}{\left(\sqrt[]{x}+3\right)\left(\sqrt[]{x}-3\right)}+\dfrac{x+9}{x-9}\right):\left(\dfrac{2\sqrt[]{x}-5}{\sqrt[]{x}\left(\sqrt[]{x}-3\right)}-\dfrac{1}{\sqrt[]{x}}\right)\)

\(\Leftrightarrow M=\left(\dfrac{3\sqrt[]{x}-9+x+9}{x-9}\right):\left(\dfrac{2\sqrt[]{x}-5-\left(\sqrt[]{x}-3\right)}{\sqrt[]{x}\left(\sqrt[]{x}-3\right)}\right)\)

\(\Leftrightarrow M=\left(\dfrac{3\sqrt[]{x}+x}{x-9}\right):\left(\dfrac{2\sqrt[]{x}-5-\sqrt[]{x}+3}{\sqrt[]{x}\left(\sqrt[]{x}-3\right)}\right)\)

\(\Leftrightarrow M=\left(\dfrac{\sqrt[]{x}\left(\sqrt[]{x}+3\right)}{x-9}\right):\left(\dfrac{\sqrt[]{x}-2}{\sqrt[]{x}\left(\sqrt[]{x}-3\right)}\right)\)

\(\Leftrightarrow M=\left(\dfrac{\sqrt[]{x}}{\sqrt[]{x}-3}\right):\left(\dfrac{\sqrt[]{x}-2}{\sqrt[]{x}\left(\sqrt[]{x}-3\right)}\right)\)

\(\Leftrightarrow M=\dfrac{\sqrt[]{x}}{\sqrt[]{x}-3}.\dfrac{\sqrt[]{x}\left(\sqrt[]{x}-3\right)}{\sqrt[]{x}-2}\)

\(\Leftrightarrow M=\dfrac{x}{\sqrt[]{x}-2}\)

2) Để \(M< 0\) khi và chỉ chi

\(M=\dfrac{x}{\sqrt[]{x}-2}< 0\left(1\right)\)

Nghiệm của tử là \(x=0\)

Nghiệm của mẫu \(\sqrt[]{x}-2=0\Leftrightarrow\sqrt[]{x}=2\Leftrightarrow x=4\)

Lập bảng xét dấu... ta được

\(\left(1\right)\Leftrightarrow0< x< 4\)

Câu 1.Cho biểu thức \(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\), \(N=\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\) với \(x\ge0,x\ne4,x\ne9.\)1) Tính giá trị của biểu thức N khi x = 16,2) Rút gọn biểu thức M.3) Tìm tất cả các số tự nhiên x để M < N.Câu 2.Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:Hai người đi xe đạp xuất phát cùng một lúc đi từ A đến B. Vận tốc của họ hơn kém nhau 4 km/h nên...
Đọc tiếp

undefined

Câu 1.

Cho biểu thức \(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)\(N=\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\) với \(x\ge0,x\ne4,x\ne9.\)

1) Tính giá trị của biểu thức N khi x = 16,

2) Rút gọn biểu thức M.

3) Tìm tất cả các số tự nhiên x để M < N.

Câu 2.

Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:

Hai người đi xe đạp xuất phát cùng một lúc đi từ A đến B. Vận tốc của họ hơn kém nhau 4 km/h nên đến B sớm muộn hơn nhau 45 phút. Tính vận tốc của mỗi người, biết quãng đường AB dài 36 km.

Câu 3.

1) Giải hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{x+1}{x}+\dfrac{2y+1}{y}=5\\\dfrac{3x+2}{x}+\dfrac{3y+1}{y}=9\end{matrix}\right.\)

2) Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: y = x + m và parabol (P): y = x2.

a) Tìm các tọa độ giao điểm của d và (P) khi m = 6.

b) Tìm m sao cho d cắt (P) tại hai điểm phân biệt có hoành độ dương.

Câu 4.

Cho tam giác ABC vuông tại A và AB < AC. Gọi H là hình chiếu vuông góc của A trên BC và M là điểm đối xứng của H qua AB.

1) Chứng minh tứ giác AMBH nội tiếp.

2) P là giao điểm thứ hai của đường thẳng CM với đường tròn ngoại tiếp tứ giác AMBH. Chứng minh CP.CM = CA2.

3) Gọi E, N lần lượt là giao điểm thứ hai của AB, HP với đường tròn ngoại tiếp tam giác APC. Chứng minh rằng EN song song với BC.

Câu 5.

Giải phương trình: \(\sqrt{x-3}+x^2-6x+7=0\)

7

Câu 2: 

2) Ta có: \(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)

\(=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-\sqrt{x}}{\sqrt{x}-3}\)

16 tháng 4 2021

Câu 2 : 

Gọi : vận tốc của người đi chậm là : x (km/h) ( x > 0 ) 

Vận tốc của người đi nhanh : x + 4 (km/h) 

Vi : người đi chậm đến muộn hơn : 45 phút \(=\dfrac{3}{4}\left(h\right)\)

Khi đó : 

\(\dfrac{36}{x}-\dfrac{36}{x+4}=\dfrac{3}{4}\)

\(\Leftrightarrow\left[36\cdot\left(x+4\right)-36x\right]\cdot4=3x\cdot\left(x+4\right)\)

\(\Leftrightarrow3x^2+12x-144=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=12\left(n\right)\\x=16\left(l\right)\end{matrix}\right.\)

 

 

24 tháng 12 2017

Bài 1.

a) ( x - 2)2 - ( x + 3)( x - 3)= 17

=> x2 - 4x + 4 - x2 + 9 - 17 = 0

=> -4x - 4 = 0

=> -4( x + 1 ) = 0

=> x = -1

Vậy,...

b)4( x - 3)2 - ( 2x - 1)( 2x + 1) = 10

=> 4( x2 - 6x + 9) - 4x2 + 1 - 10 = 0

=> - 24x + 36 - 9 = 0

=> -24x + 27 = 0

=> -3( 8x - 9) = 0

=> x = \(\dfrac{9}{8}\)

Vậy,...

c) ( x - 4)2 - ( x - 2)( x + 2)= 36

=> x2 - 8x + 16 - x2 + 4 - 36 = 0

=> -8x - 16 = 0

=> -8( x + 2) = 0

=> x = -2

d) ( 2x + 3)2 - ( 2x + 1)( 2x - 1) = 10

=> 4x2 + 12x + 9 - 4x2 + 1 - 10 = 0

=> 12x = 0

=> x = 0

Vậy,...

Bài 2.

\(\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\)

a) ĐKXĐ : ( x + 1)( 2x - 6) # 0

=> 2( x + 1)( x - 3) # 0

=> x # -1 ; x # 3

Vậy,...

b) Để P = 1

=> \(\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=1\)

=> \(\dfrac{3x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{3x}{2\left(x-3\right)}=1\)

=> 3x = 2x - 6

=> x = -6 ( thỏa mãn ĐKXĐ)

Vậy,...

Bài 3.

P = \(\dfrac{x}{x-1}+\dfrac{x^2+1}{1-x^2}\)

a) Để P có nghĩa tức P xác định .

ĐKXĐ : x - 1 # 0 => x # 1

* 1 - x2 # 0 => x # 1 ; x # -1

Vậy,...

b) P = \(\dfrac{x}{x-1}+\dfrac{x^2+1}{1-x^2}\)

P = \(\dfrac{x^2+x-x^2-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x+1}\)( x# 1; x# -1)

c) Để P = -1 thì :

\(\dfrac{1}{x+1}=-1\)

=> -x - 1 = 1

=> x = -2 ( thỏa mãn ĐKXĐ )

Vậy,...

22 tháng 8 2021

a/ \(M=\left(1+\dfrac{x^2}{x^2+1}\right):\left(\dfrac{1}{x-1}-\dfrac{2x}{x^3+x-x^2-1}\right)\)

\(=\dfrac{2x^2+1}{x^2+1}:\dfrac{x-1}{x^2+1}\)

\(=\dfrac{\left(2x^2+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x-1\right)}\)

\(=\dfrac{2x^2+1}{x-1}\)

===========

b/ Thay x=-4 vào M ta được:

\(\dfrac{2.\left(-4\right)^2+1}{-4-1}=-\dfrac{33}{5}\)

Vậy: Giá trị của M tại x=-4 là \(-\dfrac{33}{5}\)

Ta có: M=A+B

\(=\dfrac{x-\sqrt[3]{x}}{x-1}+\dfrac{1}{\sqrt[3]{x}-1}+\dfrac{1}{\sqrt[3]{x^2}+\sqrt[3]{x}+1}\)

\(=\dfrac{x-\sqrt[3]{x}}{\left(\sqrt[3]{x}-1\right)\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)}+\dfrac{\sqrt[3]{x^2}+\sqrt[3]{x}+1+\sqrt[3]{x}-1}{\left(\sqrt[3]{x}-1\right)\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)}\)

\(=\dfrac{x+\sqrt[3]{x}+\sqrt[3]{x^2}}{\left(\sqrt[3]{x}-1\right)\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)}\)

\(=\dfrac{\sqrt[3]{x}}{\sqrt[3]{x}-1}\)