K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2020

A = \(\frac{5}{-x^2-2x-3}=\frac{5}{-\left(x+1\right)^2-2}\)

Do: \(-\left(x+1\right)^2-2\le-2\)=> \(\frac{5}{-\left(x+1\right)^2-2}\ge-\frac{5}{2}\)

Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1

Vậy MinA = -5/2 <=> x = -1

28 tháng 11 2020

Bài làm 

Ta có : -x2 - 2x - 3

= -x2 - 2x - 1 - 2

= -( x2 + 2x + 1 ) - 2

= -( x - 1 )2 - 2 ≤ -2 ∀ x

=> \(\frac{1}{-\left(x-1\right)^2-2}\ge-\frac{1}{2}\)

=> \(\frac{5}{-\left(x-1\right)^2-2}\ge-\frac{5}{2}\)

hay A ≥ -5/2

Đẳng thức xảy ra khi x = 1

=> MinA = -5/2 <=> x = 1

a: \(=\sqrt{x-3-2\sqrt{x-3}+3}\)

\(=\sqrt{x-3-2\sqrt{x-3}+1+2}=\sqrt{\left(\sqrt{x-3}-1\right)^2+2}>=\sqrt{2}\)

Dấu = xảy ra khi x-3=1

=>x=4

 

22 tháng 9 2021

\(A=\left|3-x\right|+8\ge8\)

\(minA=8\Leftrightarrow x=3\)

\(B=\left|x+2\right|-4\ge-4\)

\(minB=-4\Leftrightarrow x=-2\)

22 tháng 9 2021

cảm ơn hihi

18 tháng 9 2021

a) Vì \(\sqrt{x-5}\) ≥0

⇒ \(\sqrt{x-5}+7\) ≥ 7

Min A=7⇔x-5=0

             ⇔x=5

18 tháng 9 2021

b) Vì \(\sqrt{3x-5}\) ≥0

⇒ 8-\(\sqrt{3x-5}\) ≤8

Max=8⇔3x-5\(=\)0

           ⇔\(x=\dfrac{5}{3}\)

9 tháng 8 2021

em cảm ơnnnnnnnnnn

NV
27 tháng 7 2021

\(A=\dfrac{x^2-4x+1}{x^2}=\dfrac{1}{x^2}-\dfrac{4}{x}+1=\left(\dfrac{1}{x^2}-\dfrac{4}{x}+4\right)-3=\left(\dfrac{1}{x}-2\right)^2-3\ge-3\)

\(A_{min}=-3\) khi \(x=\dfrac{1}{2}\)

21 tháng 9 2021

2) \(A=-x^2-y^2+2x-6y+9=-\left(x^2-2x+1\right)-\left(y^2+6y+9\right)+19=-\left(x-1\right)^2-\left(y+3\right)^2+19\)

\(maxA=19\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

22 tháng 9 2021

Câu 1 Tìm GTNN là

A=2a2+b2-2ab+10a+42

 

24 tháng 9 2019

a) Đặt \(x-1=a\)

\(pt\Leftrightarrow\frac{13}{a}+\frac{5}{2a}=\frac{6}{3a}\)

\(\Leftrightarrow\frac{31}{2a}=\frac{6}{3a}\)

\(\Leftrightarrow\frac{31}{2}=2\)(vô lí)

Vậy pt vô nghiệm

24 tháng 9 2019

a) \(\frac{13}{x-1}+\frac{5}{2x-2}=\frac{6}{3x-3}\)

\(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}=\frac{6}{3\left(x-1\right)}\)

\(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}=\frac{2}{x-1}\)

\(\frac{31}{2\left(x-1\right)}=\frac{2}{x-1}\)

\(\frac{31}{2}=2\)

=> không có x thỏa mãn đề bài.

b) \(\frac{1}{x-1}+\frac{-2}{3}\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x}\)

\(\frac{1}{x-1}+\frac{-2}{3}.\frac{-9}{20}=\frac{5}{2\left(1-x\right)}\)

\(\frac{1}{x-1}-\frac{-18}{60}=\frac{5}{2\left(1-x\right)}\)

\(\frac{1}{x-1}+\frac{3}{10}=\frac{5}{2\left(1-x\right)}\)

\(10\left(1-x\right)+3\left(x-1\right)\left(1-x\right)=25\left(x-1\right)\)

\(7-4x-3x^2=25x-25\)

\(7-4x-3x^2-25x+25=0\)

\(32-29x-3x^2=0\)

\(3x^2+29x-30=0\)

\(3x^2+32x-3x-32=0\)

\(x\left(3x+32\right)-\left(3x+32\right)=0\)

\(\left(3x+32\right)\left(x-1\right)=0\)

\(\orbr{\begin{cases}3x+32=0\\x-1=0\end{cases}}\)

\(\orbr{\begin{cases}x=-\frac{32}{3}\\x=1\end{cases}}\)

8 tháng 11 2021

\(A=\left|x-201\right|+\left|x-204\right|=\left|x-201\right|+\left|204-x\right|\ge\left|x-201+204-x\right|=\left|3\right|=3\)

\(minA=3\Leftrightarrow\left(x-201\right)\left(204-x\right)\ge0\Leftrightarrow204\ge x\ge201\)

12 tháng 9 2017

\(a,\frac{5}{x-2}=\frac{3}{2x+1}\) 

=>\(5\left(2x+1\right)=3\left(x-2\right)\)

=>\(10x+5=3x-6\)

=>\(10x-3x=-6-5\)

=>\(7x=-11\)

=> \(x=-\frac{11}{7}\)

b,\(\frac{2x-3}{5}=\frac{x+2}{2}\)

=>\(2\left(2x-3\right)=5\left(x+2\right)\)

=>\(4x-6=5x+10\)

=>\(4x-5x=10+6\)

=>\(-x=16\)

=>\(x=-16\)

Chúc Bạn May Mắn

12 tháng 9 2017

a) 5.2x+1=x-2.3

=>10x+5=3x-6

=>10x-3x=-6-5

=>x(10-3)=-11

=>x.7=-11

=>x=\(\frac{-11}{7}\)

vậy..